江苏省淮安市城北开明中学2023年中考五模数学试题含解析.doc
《江苏省淮安市城北开明中学2023年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省淮安市城北开明中学2023年中考五模数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1不等式组的解集是()Ax1Bx2C1x2D1x22下列图形不是正方体展开图的是()ABCD3若抛物线yx2(m3)xm能与x轴交,则两交点间的距离最值是( )A最大值2,B最小值2C最大值2D最小值24如图,在中, ,将折叠,使点落在边上的点
2、处, 为折痕,若,则的值为( )ABCD5已知二次函数ya(x2)2+c,当xx1时,函数值为y1;当xx2时,函数值为y2,若|x12|x22|,则下列表达式正确的是()Ay1+y20By1y20Ca(y1y2)0Da(y1+y2)06若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx57某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是()A0.15B0.2C0.25D0.38下列各数3.1415926,中,无理数有( )A2个B3个C4个D5
3、个91桌面上放置的几何体中,主视图与左视图可能不同的是( )A圆柱 B正方体 C球 D直立圆锥10一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A50 B0.02 C0.1 D111如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(4,0),顶点B在第二象限,BAO=60,BC交y轴于点D,DB:DC=3:1若函数(k0,x0)的图象经过点C,则k的值为()A B C D12下列各数中,相反数等于本身的数是( )A1B0C1D2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,菱形的边,是上一点,是边上一动点,将梯形沿直线折叠,的对应点为,当的长
4、度最小时,的长为_14某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63,则筒仓CD的高约为_m(精确到0.1m,sin630.89,cos630.45,tan631.96)15如图,在ABC中,ACB=90,A=45,CDAB于点D,点P在线段DB上,若AP2-PB2=48,则PCD的面积为_.16竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第_秒时离地面最高17已知一粒米的质量是1111121
5、千克,这个数字用科学记数法表示为_18一个扇形的圆心角为120,弧长为2米,则此扇形的半径是_米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CPx轴,垂足为点P,连接AD、BC(1)求点A、B、D的坐标;(2)若AOD与BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.20(6分)解不等式组: ,并写出它的所有整数解21(6分)如图(1),P 为ABC
6、所在平面上一点,且APB=BPC=CPA=120,则点 P 叫做ABC 的费马点(1)如果点 P 为锐角ABC 的费马点,且ABC=60求证:ABPBCP;若 PA=3,PC=4,则 PB= (2)已知锐角ABC,分别以 AB、AC 为边向外作正ABE 和正ACD,CE 和 BD相交于 P 点如图(2)求CPD 的度数;求证:P 点为ABC 的费马点22(8分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()ABC的面积等于_;()若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点
7、E,点G的位置是如何找到的(不要求证明)_23(8分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C(1)当A(1,0),C(0,3)时,求抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点当点P关于原点的对称点P落在直线BC上时,求m的值;当点P关于原点的对称点P落在第一象限内,PA2取得最小值时,求m的值及这个最小值24(10分)已知ACDC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB(1)直接写出D与MAC之间的数量关系;(2)如图1,猜想AB,BD与BC之间的数量关系,并说明理由;如图2,直接写出AB,B
8、D与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当BCD30,BD时,直接写出BC的值25(10分)已知PA与O相切于点A,B、C是O上的两点(1)如图,PB与O相切于点B,AC是O的直径若BAC25;求P的大小(2)如图,PB与O相交于点D,且PDDB,若ACB90,求P的大小26(12分)如图,在ABC中,AB=AC,BAC=120,EF为AB的垂直平分线,交BC于点F,交AB于点E求证:FC=2BF27(12分)如图,在RtABC中,ABC=90o,AB是O的直径,O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,A=PDB(1)求证:PD是O的切线;(2)若AB=
9、4,DA=DP,试求弧BD的长;(3)如图,点M是弧AB的中点,连结DM,交AB于点N若tanA=,求的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】由x1得,x1,由3x51得,3x6,x2,不等式组的解集为1x2,故选D2、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.3、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2
10、=m-3,x1x2=-m,则两交点间的距离d=|x1-x2|= ,m=1时,dmin=2故选D.4、B【解析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3CE=AC-AE=4-3=1在RtCED中,CD= 故选:B【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.5、C【解析】分a1和a1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解【详解】解:a1时,二次函数图象开口向上,|x12|x22|,y1y2,无法确定y1+y2
11、的正负情况,a(y1y2)1,a1时,二次函数图象开口向下,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,综上所述,表达式正确的是a(y1y2)1故选:C【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论6、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即k
12、x1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式7、B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故选B.8、B【解析】根据无理数的定义即可判定求解【详解】在3.1415926,中,3.1415926,是有理数,是无理数,共有3个,故选:B【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001,等有这样规律的数9、B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,
13、从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B考点:简单几何体的三视图10、D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.11、D【解析】解:四边形ABCD是平行四边形,点A的坐标为(4,0),BC=4,DB:DC=3:1,B(3,OD),C(1,OD),BAO=60,COD=30,OD=,C(1,),k=,故选D点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键12、B【解析】根据相反数的意义,只有符号不同的数为相反数【详解】解:相反数等于本身的数是1故选B【点睛】本题考查了相反数的意义注意掌握只有符号不同的数为
14、相反数,1的相反数是1二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】如图所示,过点作,交于点.在菱形中,且,所以为等边三角形, 根据“等腰三角形三线合一”可得,因为,所以在中,根据勾股定理可得,因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为所以,所以,所以点睛:A为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A点在以P为圆心、AP为半径的圆上,当C、A、P在同一条直线时CA取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.14、40.0【解析】首先过点A作AEBD
15、,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后RtACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AEBD,交CD于点E,ABBD,CDBD,BAEABDBDE90,四边形ABDE是矩形,AEBD20m,DEAB0.8m,在RtACE中,CAE63,CEAEtan63201.9639.2(m),CDCEDE39.20.840.0(m)答:筒仓CD的高约40.0m,故答案为:40.0【点睛】此题考查解直角三角形的应用仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用15、
16、6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48,利用平方差公式及线段的和差公式将其变形可得CDPD=12,利用PCD的面积 =CDPD可得.【详解】解: 在ABC中,ACB=90,A=45,B=45,AC=BC,CDAB,AD=BD=CD=AB,AP2-PB2=48,(AP+PB)(AP-PB)=48,AB(AD+PD-BD+DP)=48,AB2PD=48,2CD2PD=48,CDPD=12, PCD的面积=CDPD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 淮安市 城北 开明 中学 2023 年中 考五模 数学试题 解析
限制150内