江苏省睢宁2023年高三第三次模拟考试数学试卷含解析.doc
《江苏省睢宁2023年高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省睢宁2023年高三第三次模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABC
2、D2过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为( )ABCD3设,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,则,由棣莫弗定理可以导出复数乘方公式:,已知,则( )AB4CD165已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )AB2CD6已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为
3、了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,187将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为( )ABCD8在中,“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9若集合M1,3,N1,3,5,则满足MXN的集合X的个数为()A1B2C3D410已知函数,若,则的最小值为( )参考数据:ABCD11 “且”是“”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件1
4、2若向量,则( )A30B31C32D33二、填空题:本题共4小题,每小题5分,共20分。13在区间内任意取一个数,则恰好为非负数的概率是_.14已知,则_15棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为_.16已知是抛物线的焦点,是上一点,的延长线交轴于点若为的中点,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定
5、值;若不是,请说明理由.18(12分)已知椭圆:(),四点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.19(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.20(12分)在中,、分别是角、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.21(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.22(10分)已知在中,角,的对边分别为,且.(1)求的值;(2)若,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分
6、,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据线面平行或垂直的有关定理逐一判断即可.【详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【点睛】考查线面平行或垂直的判断,基础题.2、D【解析】根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可【详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即则直线的斜率故选:D【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题3、A【解析】根据题意得到充分性,
7、验证得出不必要,得到答案.【详解】,当时,充分性;当,取,验证成立,故不必要.故选:.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.4、D【解析】根据复数乘方公式:,直接求解即可.【详解】, .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.5、C【解析】计算得到,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,故,故,代入双曲线化简得到:,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.6、A【解析】利用统计
8、图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数【详解】样本容量为:(150+250+400)30%240,抽取的户主对四居室满意的人数为:故选A【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用7、B【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.8、D【解
9、析】通过列举法可求解,如两角分别为时【详解】当时,但,故充分条件推不出;当时,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题9、D【解析】可以是共4个,选D.10、A【解析】首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,令,解得,所以,且,化简得,所以,构造函数,.构造函数,所以在区间上递减,而,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 睢宁 2023 年高 第三次 模拟考试 数学试卷 解析
限制150内