海南省文昌市重点名校2023年中考联考数学试卷含解析.doc
《海南省文昌市重点名校2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《海南省文昌市重点名校2023年中考联考数学试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1在ABC中,C90,sinA,则tanB等于( )ABCD2我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量把130000000kg用科学记数法可表示为( )A13kgB0.13kgC1.3kgD1.3kg3已知关于x的一元二次方程有两个相等的实根,则k
2、的值为( )ABC2或3D或4某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD5-2的绝对值是()A2B-2C2D6已知,C是线段AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1)C1D(1)7在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是()A B CD 8随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD9下列各数中是有理数的是()AB0CD10某校对
3、初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是()A0.15B0.2C0.25D0.3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_12已知关于x的方程x22xk0有两个相等的实数根,则k的值为_13抛物线y=mx2+2mx+5的对称轴是直线_14某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格
4、进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_15如图,在ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_16因式分解: 三、解答题(共8题,共72分)17(8分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=与反比例函数y1=的图象的交点为点B、D,且B(3,1),求:()求反比例函数的解析式;()求点D坐标,并直接写出y1y2时x的取值范围;()动点P(x,0)在x轴的正半
5、轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标18(8分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关)(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率19(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角CAE=
6、30,沿着AE方向前进15米到点B处测得CBE=45,求公路的宽度(结果精确到0.1米,参考数据:1.73)20(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同
7、学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率21(8分)如图是88的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等22(10分)已知,在菱形ABCD中,ADC=60,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE(1)如图1,线段EH、CH、AE之间的数量关系是 ;(2)如图2,将DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH23(12分)如图,在ABC中,ABAC,AE是BAC的平分线,ABC
8、的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F(1)求证:AE为O的切线;(2)当BC=4,AC=6时,求O的半径;(3)在(2)的条件下,求线段BG的长24先化简,再求值:,请你从1x3的范围内选取一个适当的整数作为x的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】法一,依题意ABC为直角三角形,A+B=90,cosB=,sinB=,tanB=故选B法2,依题意可设a=4,b=3,则c=5,tanb=故选B2、D【解析】试题分析:科学计数法是指:a,且,n为原数的整数位数减一.3、A【解析】根据方程有两个相
9、等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-423=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键4、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概
10、率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比5、A【解析】根据绝对值的性质进行解答即可【详解】解:1的绝对值是:1故选:A【点睛】此题考查绝对值,难度不大6、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍7、A【解析】首先根据题意画出树状
11、图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为,故选A【点睛】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验8、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故
12、选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.9、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键10、B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 海南省 文昌市 重点 名校 2023 年中 联考 数学试卷 解析
限制150内