《江苏省苏州市景范中学2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市景范中学2023届中考数学押题试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()ABCD2如图1,在ABC中,D、E分别是AB、AC的中点,将ADE沿线段DE向下折叠,得到图1下列关于图1的四个结论中,不一定成立的是()A点A落在BC边的中点B
2、B+1+C=180CDBA是等腰三角形DDEBC3如图,O中,弦BC与半径OA相交于点D,连接AB,OC,若A=60,ADC=85,则C的度数是()A25B27.5C30D354如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD5下列图形不是正方体展开图的是()ABCD6甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;
3、乙到达终点时,甲离终点还有300米其中正确的结论有()A1个B2个C3个D4个7在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( )A5B10C15D208如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C
4、20D229如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上如果244,那么1的度数是( )A14 B15 C16 D1710如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD11关于x的不等式x-b0恰有两个负整数解,则b的取值范围是A B C D 12已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13一机器人以0.2m/s的速度在平地上按下图中的步骤行
5、走,那么该机器人从开始到停止所需时间为_s14在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a)如图,若曲线 与此正方形的边有交点,则a的取值范围是_15分解因式:x29_ 16如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是_cm17空气质量指数,简称AQI,如果AQI在050空气质量类别为优,在51100空气质量类别为良,在101150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为_%18方程组的解一定是方程_与
6、_的公共解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:20(6分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D(1)求a,b的值及反比例函数的解析式;(2)若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由21(6分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线(1)判断直线l与圆O的关系,并说明理由;(2)若的
7、平分线BF交AD于点F,求证:;(3)在(2)的条件下,若,求AF的长22(8分)先化简,再求值:(m+2),其中m=23(8分)如图,AB是O的直径,点C为O上一点,CN为O的切线,OMAB于点O,分别交AC、CN于D、M两点求证:MD=MC;若O的半径为5,AC=4,求MC的长24(10分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm点A、C、E在同一条直线上,且CAB=75(参考数据:sin75=0.966,cos75=0
8、.259,tan75=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm)25(10分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图根据图中信息解答下列问题:该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?26(12分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30,B点的俯角为10,求建筑物A
9、B的高度(结果保留小数点后一位)参考数据sin100.17,cos100.98,tan100.18,取1.127(12分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要
10、从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据左视图是从左面看所得到的图形进行解答即可【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间故选:C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图2、A【解析】根据折叠的性质明确对应关系,易得A=1,DE是ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确【详解】根据题意可知DE是三角形ABC的中
11、位线,所以DEBC;B+1+C=180;BD=AD,DBA是等腰三角形故只有A错,BACA故选A【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质还涉及到翻折变换以及中位线定理的运用(1)三角形的外角等于与它不相邻的两个内角和(1)三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180这一隐含的条件通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力解答此类题最好动手操作3、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出B以及ODC度数,再利用圆周角定理以及三角形内角和定理得出答案详解:A=60,ADC=85,B=85-60=25,CDO=95,
12、AOC=2B=50,C=180-95-50=35故选D点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出AOC度数是解题关键4、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分5、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,
13、不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.6、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:2404=60米/分,故正确,乙走完全程用的时间为:2400(166012)=30(分钟),故错误,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:2400(4+30)60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.7、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值
14、总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.8、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解9、C【解析】依据ABC=60,2=44,即可得到EBC=16,再根据BECD,即可得出1=EBC=16【详解】如图,ABC=60
15、,2=44,EBC=16,BECD,1=EBC=16,故选:C【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等10、B【解析】根据图示,可得:b0a,|b|a|,据此判断即可【详解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握11、A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x的不等式x-b0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.12、D
16、【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM上的点(P)重合,而选项C还原后两个点不能够重合故选D点评:本题考核立意相对较新,考核了学生的空间想象能力二、填空题:(本大题共6个小题,每小题4分,共24分)13、240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走
17、一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360,我们可以计算机器人所转的回数,即36045=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走68=48m,根据时间=路程速度,即可得出结果.本题解析: 依据题中的图形,可知机器人一共转了360,36045=8,机器人一共行走68=48m该机器人从开始到停止所需时间为480.2=240s14、1a【解析】根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围【详解】解:反比例函数经过点A和点C当反比例函数经过点A时,即
18、=3,解得:a=(负根舍去);当反比例函数经过点C时,即=3,解得:a=1(负根舍去),则1a故答案为: 1a【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k15、 (x3)(x3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).16、 【解析】连接OA,作OMAB于点M,正六边形ABCDEF的外接圆半径为2cm正六边形的半径为2 cm, 即OA2cm在正六边形ABCDEF中,AOM=30,正六边形的边心距是OM= cos30OA=(cm)故答案为.17、80【解析】【分析
19、】先求出AQI在050的频数,再根据%,求出百分比.【详解】由图可知AQI在050的频数为10,所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80% 故答案为80【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.18、5x3y=8 3x+8y=9 【解析】方程组的解一定是方程5x3y=8与3x+8y=9的公共解故答案为5x3y=8;3x+8y=9.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、.【解析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案【详解】解:原式= = 故答案为 【
20、点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键20、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1
21、,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当
22、MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键21、(1)直线l与相切,见解析;(2)见解析;(3)AF=.【解析】连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;先求得BE的长,然后证明,由相似三角形的性质可求得AE的长,于是可得到AF的长【详解】直线l与相切理由:如图1所示:连接OE平分,直
23、线l与相切平分,又,又,由得,即,解得;故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键22、-2(m+3),-1【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算【详解】解:(m+2-),=,=-,=-2(m+3)把m=-代入,得,原式=-2(-+3)=-123、(1)证明见解析;(2)MC=.【解析】【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可【详解】(1)连接OC,CN为O
24、的切线,OCCM,OCA+ACM=90,OMAB,OAC+ODA=90,OA=OC,OAC=OCA,ACM=ODA=CDM,MD=MC;(2)由题意可知AB=52=10,AC=4,AB是O的直径,ACB=90,BC=2,AOD=ACB,A=A,AODACB,即,可得:OD=2.5,设MC=MD=x,在RtOCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.24、63cm.【解析】试题分析:(1)在Rt ACD,AC45,DC60,根据勾股定理可得
25、AD 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AEAC+CE,在直角 EFA中,根据EFAEsin75可求出EF的长度,即为点E到车架档AB的距离;试题解析:25、(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:120050%=2400个,A品牌所占的圆心角:360=60;故答案为2400,60;(2)B品牌鸡蛋的数量为:24004001200=800个,补全统计图如图:(3)分
26、店销售的B种品牌的绿色鸡蛋为:1500=500个26、建筑物AB的高度约为30.3m【解析】分析:过点D作DEAB,利用解直角三角形的计算解答即可详解:如图,根据题意,BC=2,DCB=90,ABC=90 过点D作DEAB,垂足为E,则DEB=90,ADE=30,BDE=10,可得四边形DCBE为矩形,DE=BC=2在RtADE中,tanADE=,AE=DEtan30=在RtDEB中,tanBDE=,BE=DEtan10=20.18=7.2,AB=AE+BE=23.09+7.2=30.2930.3答:建筑物AB的高度约为30.3m点睛:考查解直角三角形的应用仰角俯角问题,要求学生能借助俯角构造
27、直角三角形并解直角三角形27、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30100=30%,参加器乐的人数为9+15=24人,24100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)50021%=105(人)答:估计其中参加“书法”项目活动的有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
限制150内