江苏省苏州第一中学2022-2023学年高三最后一卷数学试卷含解析.doc
《江苏省苏州第一中学2022-2023学年高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州第一中学2022-2023学年高三最后一卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知平行于轴的直线分别交曲线于两点,则的最小值为( )ABCD2已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、元)甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分
2、别是、,则甲、乙两人所扣租车费用相同的概率为( )ABCD3已知实数x,y满足,则的最小值等于( )ABCD4已知集合,则集合( )ABCD5集合的真子集的个数是( )ABCD6已知三棱柱( )ABCD7已知命题,那么为( )ABCD8已知复数满足,则的值为( )ABCD29五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )ABCD10如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD11
3、将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为( )ABCD12设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )ABCD1二、填空题:本题共4小题,每小题5分,共20分。13已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为_.14执行以下语句后,打印纸上打印出的结果应是:_15设是等比数列的前项的和,成等差数列,则的值为_16如图梯形为直角梯形,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_三、解答题:共70
4、分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.()证明:平面平面;()求二面角的余弦值.18(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.19(12分)已知a0,证明:120(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.(1)求椭圆的方程;(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.21(12分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若
5、存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答22(10分)已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设直线为,用表示出,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值【详解】解:设直线为,则,而满足,那么设,则,函数在上单调递减,在上单调递增,所
6、以故选:【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题2、B【解析】甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得【详解】由题意甲、乙租车费用为3元的概率分别是,甲、乙两人所扣租车费用相同的概率为故选:B【点睛】本题考查独立性事件的概率掌握独立事件的概率乘法公式是解题基础3、D【解析】设,去绝对值,根据余弦函数的性质即可求出【详解】因为实数,满足,设,恒成立,故则的最小值等于.故选:【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生
7、对这些知识的理解掌握水平4、D【解析】根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.5、C【解析】根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题6、C【解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所
8、以2R13,即R7、B【解析】利用特称命题的否定分析解答得解.【详解】已知命题,那么是.故选:【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.8、C【解析】由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.9、A【解析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水
9、、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.10、C【解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 苏州 第一 中学 2022 2023 学年 最后 一卷 数学试卷 解析
限制150内