江苏省苏州市振华中学2023年中考三模数学试题含解析.doc
《江苏省苏州市振华中学2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市振华中学2023年中考三模数学试题含解析.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列多边形中,内角和是一个三角形内角和的4倍的是()A四边形 B五边形 C六边形 D八边形2若一个正多边形的每个内角为150,则这个正多边形的边数是()A12B11
2、C10D93如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与ABC相似的是ABCD4若抛物线ykx22x1与x轴有两个不同的交点,则k的取值范围为()Ak1Bk1Ck1且k0Dk1且k05如图,已知ABAD,那么添加下列一个条件后,仍无法判定ABCADC的是( )ACBCDBBCADCACBACDACDBD906如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A60cm2B50cm2C40cm2D30cm27股市有风险,投资需谨慎截至今年五月底,我国股市开户总数约95000000
3、,正向1亿挺进,95000000用科学计数法表示为( )A9.5106B9.5107C9.5108D9.51098如图,AB是O的直径,点C、D是圆上两点,且AOC126,则CDB()A54B64C27D379下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个10如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bccos2CcsintanDcsincos二、填空题(共7小题,每小题3分,满分21分)11若圆锥的地面半径为,侧面积为,则圆锥的母线是_12已知一元二次方程2x25x+1=0的两根为m,n,则m2+n
4、2=_13如图,ABC内接于O,DA、DC分别切O于A、C两点,ABC=114,则ADC的度数为_14在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 15如图,中,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_16以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,ABC=150,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_m(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_边形17a(a+b)b(a+b)=_三、解答题(共
5、7小题,满分69分)18(10分)如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,BECE,连接DE求证:BDEBCE;试判断四边形ABED的形状,并说明理由19(5分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45方向上,从A向东走600米到达B处,测得C在点B的北偏西60方向上(1)MN是否穿过原始森林保护区,为什么?(参考数据:1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?20(8分)如图,在正方
6、形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F求证:DF2=EFBF21(10分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?22(10分)已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D(I)如图,若BC为O的直径,求BD、CD的长
7、;(II)如图,若CAB=60,求BD、BC的长23(12分)计算:_24(14分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90
8、时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n由题意得:(n2)180=4180解得:n=1答:这个多边形的边数为1故选C【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键2、A【解析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180150=30,再根据多边形外角和为360度即可求出边数【详解】
9、一个正多边形的每个内角为150,这个正多边形的每个外角=180150=30,这个正多边形的边数=1故选:A【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质3、B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、只有选项B的各边为1、与它的各边对应成比例故选B【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.4、C【解析】根据抛物线ykx22x1与x轴有两个不同的交点,得出b24ac0,进而求出k的取值范围【详解】二次函数ykx2
10、2x1的图象与x轴有两个交点,b24ac(2)24k(1)4+4k0,k1,抛物线ykx22x1为二次函数,k0,则k的取值范围为k1且k0,故选C.【点睛】本题考查了二次函数yax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.5、B【解析】由图形可知ACAC,结合全等三角形的判定方法逐项判断即可.【详解】解:在ABC和ADC中ABAD,ACAC,当CBCD时,满足SSS,可证明ABCACD,故A可以;当BCADCA时,满足SSA,不能证明ABCACD,故B不可以;当BACDAC时,满足SAS,可证明ABCAC
11、D,故C可以;当BD90时,满足HL,可证明ABCACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.6、D【解析】标注字母,根据两直线平行,同位角相等可得B=AED,然后求出ADE和EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解【详解】解:如图,正方形的边DECF,B=AED,ADE=EFB=90,ADEEFB,设BF=3a,则EF=5a,BC=3a+5a=8a,AC=8a=a,在RtAB
12、C中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,红、蓝两张纸片的面积之和=a8a-(5a)1,=a1-15a1,=a1,=,=30cm1故选D【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.7、B【解析】试题分析: 15000000=152故选B考点:科学记数法表示较大的数8、C【解析】由AOC126,可求得BOC的度数,然后由圆周角定理,求得CDB的度数【详解】解:AOC126,BOC180AOC54,CDBBOC27故选:C【点睛】此题考查了圆周角定理注意在同圆或等圆中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 苏州市 华中 2023 年中 考三模 数学试题 解析
限制150内