江苏省苏州园区2023年高三下学期联合考试数学试题含解析.doc
《江苏省苏州园区2023年高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州园区2023年高三下学期联合考试数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD2已知集合(),若集合,且对任意的,存在使得,其中,则称集
2、合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD3已知三棱锥中,是等边三角形,则三棱锥的外接球的表面积为( )ABCD4阿基米德(公元前287年公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )ABCD5已知,复数,且为实数,则( )ABC3D-
3、36的展开式中的系数是( )A160B240C280D3207若函数有且只有4个不同的零点,则实数的取值范围是( )ABCD8已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD9如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等10在中,则=( )ABCD11已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D312把函数的图象向右平移个单位长
4、度,得到函数的图象,若函数是偶函数,则实数的最小值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列递增的等比数列,若,则_.14设,若函数有大于零的极值点,则实数的取值范围是_15在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_16如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在直三棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分别是AC,B1C1的中点求证:(1)MN平面ABB1A1;(2)ANA1B18(12分)为了检测某种
5、零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100 cm,试判断该零件是否属于“不合格”的零件.19(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.20(12分)在四棱锥中,底面是边长为2的菱形,是的中点(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积21(12分)已知椭圆:的长半
6、轴长为,点(为椭圆的离心率)在椭圆上.(1)求椭圆的标准方程;(2)如图,为直线上任一点,过点椭圆上点处的切线为,切点分别,直线与直线,分别交于,两点,点,的纵坐标分别为,求的值.22(10分)已知函数,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立. .
7、令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.2、C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.3、D【解析】根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以
8、平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.4、C【解析】设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为 .故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了
9、解,属于基础题.5、B【解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.6、C【解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.7、B【解析】由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 苏州 2023 年高 下学 联合 考试 数学试题 解析
限制150内