浙江省十校联盟2023届高三第三次模拟考试数学试卷含解析.doc
《浙江省十校联盟2023届高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省十校联盟2023届高三第三次模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的大致图象为( )ABCD2 “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三
2、个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为ABCD3定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能4设数列的各项均为正数,前项和为,且,则( )A128B65C64D635双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD26设复数满足,在复平面内对应的点为,则( )ABCD7已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、元)甲、乙租车费用为元的概率分别是、,
3、甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )ABCD8函数与在上最多有n个交点,交点分别为(,n),则( )A7B8C9D109如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、分别交于、,设三棱锥的体积为,截面三角形的面积为,则( )A,B,C,D,10祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11某校为提高新入聘教师的教学水平,实行
4、“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240C150D12012复数(i是虚数单位)在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13设的内角的对边分别为,若,则_14设,满足约束条件,若目标函数的最大值为,则的最小值为_15已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是_16如图,直三棱柱中,P是的中点,则三棱锥的体积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤
5、。17(12分)已知正实数满足 .(1)求 的最小值.(2)证明:18(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.19(12分)如图,在直三棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分别是AC,B1C1的中点求证:(1)MN平面ABB1A1;(2)ANA1B20(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是1;(2)若,成等比数列,求直线的方程.21(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.22(10分)已知函数()的图象在处的切线为(为自然对数的
6、底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,.故选:A【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.2、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的
7、关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.3、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键4、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再
8、利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.5、A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.6、B【解析】设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.7、B【解析】甲、
9、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得【详解】由题意甲、乙租车费用为3元的概率分别是,甲、乙两人所扣租车费用相同的概率为故选:B【点睛】本题考查独立性事件的概率掌握独立事件的概率乘法公式是解题基础8、C【解析】根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.9、A【解析】设,取与重合时的情况,计算出以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 联盟 2023 届高三 第三次 模拟考试 数学试卷 解析
限制150内