江苏省睢宁县菁华高级中学2022-2023学年高三下学期联考数学试题含解析.doc
《江苏省睢宁县菁华高级中学2022-2023学年高三下学期联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省睢宁县菁华高级中学2022-2023学年高三下学期联考数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前项和为,且,则( )A45B42C25D362古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,3
2、3550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为 ABCD3双曲线的渐近线方程为( )ABCD4函数在上的图象大致为( )ABCD5已知函数为奇函数,且,则( )A2B5C1D36已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限7已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D48已知椭圆:的左、右焦点分别为,点,在椭圆上,其中,若,则椭圆的离心率的取值范围为( )ABCD9已知函数,则下列判断错误的是( )A的最小正周期为B的值域为C的图象关于直线对称D的图象关于点对称10的内
3、角的对边分别为,若,则内角( )ABCD11已知函数,若所有点,所构成的平面区域面积为,则( )ABC1D12已知数列满足:.若正整数使得成立,则( )A16B17C18D19二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足:,若对任意的正整数均有,则实数的最大值是_.14若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是_15易经是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_.16在的展开式中,项的系数是_(用数字
4、作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线18(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.20(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过
5、分别作的切线,两切线的交点为,直线与交于两点(1)证明:点始终在直线上且;(2)求四边形的面积的最小值21(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.22(10分)已知是递增的等比数列,且、成等差数列.()求数列的通项公式;()设,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:
6、D【点睛】本题考查等差数列的性质,考查等差数列的前项和.2、B【解析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,6和28恰好在同一组的概率故选:B【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题3、A【解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主
7、要考查了双曲线的标准方程,双曲线的简单性质的应用.4、A【解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.5、B【解析】由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.6、A【解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点
8、睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.7、A【解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平8、C【解析】根据可得四边形为矩形, 设,根据椭圆的定义以及勾股定理可得,再分析的取值范围,进而求得再求离心率的范围即可.【详解】设,由,知,因为,在椭圆上
9、,所以四边形为矩形,;由,可得,由椭圆的定义可得,平方相减可得,由得;令,令,所以,即,所以,所以,所以,解得.故选:C【点睛】本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题.9、D【解析】先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 睢宁县 菁华 高级中学 2022 2023 学年 下学 联考 数学试题 解析
限制150内