河源市重点中学2022-2023学年中考一模数学试题含解析.doc
《河源市重点中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河源市重点中学2022-2023学年中考一模数学试题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离
2、y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个2矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH若BC=EF=2,CD=CE=1,则GH=()A1BCD3如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD4如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A5BCD75已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是
3、()Ab24acBax2+bx+c6C若点(2,m)(5,n)在抛物线上,则mnD8a+b=06如图,将ABE向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是( ) A16cmB18cmC20cmD21cm7下列生态环保标志中,是中心对称图形的是()A B C D8如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有、的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()ABCD9已知直线与直线的交点在第一象限,则的取值范围是( )ABCD10在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()
4、Ay1By2Cy3Dy4二、填空题(本大题共6个小题,每小题3分,共18分)11如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于_.12如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_.13关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_14已知扇形的圆心角为120,弧长为6,则扇形的面积是_15如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_16如图,中,AC=3,BC=4,P为AB上一点,且AP=2BP,若点A绕
5、点C顺时针旋转60,则点P随之运动的路径长是_三、解答题(共8题,共72分)17(8分)如图,AC是O的直径,PA切O于点A,点B是O上的一点,且BAC30,APB60(1)求证:PB是O的切线;(2)若O的半径为2,求弦AB及PA,PB的长18(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O画出AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论19(8分)如图,在四边形ABCD中,ADBC,BABC,BD平分ABC求证:四边形ABCD是菱形;过点D作DEBD,交BC的延长线于点E,
6、若BC5,BD8,求四边形ABED的周长20(8分) (1)计算:|1|(2017)0()13tan30;(2)化简:(),并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值21(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为 ,图中的a的值为 ;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数22(10分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原
7、点O重合,过定点M(2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y2x4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围23(12分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,
8、随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率24先化简,再求值:(1+),其中x=+1参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440=160km,则m=160,正确;当乙在
9、B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态2、C【解析】分析:延长GH交AD于点P,先证APHFGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案详解:如图,延长GH交AD于点P,四边形ABCD和四边形CEFG都是矩形,ADC=ADG=CGF=90,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,
10、又H是AF的中点,AH=FH,在APH和FGH中,APHFGH(ASA),AP=GF=1,GH=PH=PG,PD=ADAP=1,CG=2、CD=1,DG=1,则GH=PG=,故选:C点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点3、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图4、C【解析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得,解得 所以,一次函数解析式y=x+1,
11、再将A(3,m)代入,得m=3+1=.故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.5、C【解析】观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且12,所以可得mn,选项C错误; 因对称轴 ,即可得8a+b=0,选项D正确,故选C.点睛:本题主要考查了二次函数y=ax2+bx+c图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中6、C【解析】试题分析:已知,ABE向
12、右平移2cm得到DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm故答案选C考点:平移的性质.7、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形8、A【解析】根据题意得到原几何体的主视图,结合主视图选择【详解】解:原几何体的主视图是:视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河源市 重点中学 2022 2023 学年 中考 数学试题 解析
限制150内