江西省南城县第一中学2022-2023学年高三六校第一次联考数学试卷含解析.doc
《江西省南城县第一中学2022-2023学年高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南城县第一中学2022-2023学年高三六校第一次联考数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六
2、八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD2盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD3已知三点A(1,0),B(0, ),C(2,),则ABC外接圆的圆心到原点的距离为()ABCD4从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则ABCD5已知函数,对任意的,当时,则下列判断正确的是( )AB函数在上递增C函数的一条对称轴是D函数的一个对称中心是6的展
3、开式中的项的系数为( )A120B80C60D407关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位可得函数的图像8关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD9已知随机变量满足,.若,则( )A,B,C,D,10设正项等比数列的前n项和为,若,则公比( )AB4CD211设,是非零向量.若
4、,则( )ABCD12已知定义在上的偶函数,当时,设,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知实数,满足,则目标函数的最小值为_14已知函数,对于任意都有,则的值为_.15对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为_.16已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别
5、为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)求证:四边形是平行四边形.四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.18(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.19(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点
6、,线段中点为,求的值.20(12分)如图:在中,.(1)求角;(2)设为的中点,求中线的长.21(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作设(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值22(10分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若
7、点,为曲线上两动点,且满足,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题2、B【解析】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球
8、的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.3、B【解析】选B.考点:圆心坐标4、B【解析】由题意知,由,知,由此能求出【详解】由题意知,解得,故选:B【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用5、D【解析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,函数,
9、对于A,故A错误;对于B,由,解得,故B错误;对于C,当时,故C错误; 对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.6、A【解析】化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.7、B【解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,
10、定义域,对称,三角函数平移,意在考查学生的综合应用能力.8、D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 南城县 第一 中学 2022 2023 学年 高三六校 第一次 联考 数学试卷 解析
限制150内