浙江省宁波市慈溪市2022-2023学年高考数学三模试卷含解析.doc
《浙江省宁波市慈溪市2022-2023学年高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省宁波市慈溪市2022-2023学年高考数学三模试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1向量,且,则( )ABCD2已知等比数列满足,则( )ABCD3已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是( )AB9C7D4如图,圆是边长为的等边三角形的内切圆,其
2、与边相切于点,点为圆上任意一点,则的最大值为( )ABC2D5已知,则( )ABCD6某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A月收入的极差为60B7月份的利润最大C这12个月利润的中位数与众数均为30D这一年的总利润超过400万元7设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )ABCD8设,是非零向量,若对于任意的,都有成立,则ABCD9如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )ABCD10阅读名著,品味人生,是中华民族的优良传统.学生李华
3、计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:红楼梦、三国演义、水浒传及西游记,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( )A120种B240种C480种D600种11 的内角的对边分别为,已知,则角的大小为( )ABCD12某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在直角三角形中,为直角,点在线段上,且,若,则的正切值为_.14在中,角,的对边长分别为,满足,则的面积为_15在中,已知,是边的垂直平分线上的一点,则_.16已知随机变量服从正态分布,若,则_.三、解答题:共70分。解答应
4、写出文字说明、证明过程或演算步骤。17(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.18(12分)在极坐标系中,已知曲线,(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离19(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.20(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率
5、分布直方图如图所示()求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);()填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”女生男生总计获奖不获奖总计附表及公式:其中,21(12分)已知函数,它的导函数为(1)当时,求的零点;(2)当时,证明:22(10分)已知函数,为实数,且()当时,求的单调区间和极值;()求函数在区间,上的值域(其中为自然对数的底数)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解
6、】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.2、B【解析】由a1+a3+a5=21得 a3+a5+a7=,选B.3、B【解析】试题分析:圆的圆心,半径为,圆的圆心,半径是要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,故的最大值为,故选B考点:圆与圆的位置关系及其判定【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值4、C【解析】建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴
7、,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.5、C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时
8、注意三角函数的符号.6、D【解析】直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.7、C【解析】求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲
9、线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.8、D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.9、C【解析】直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值【详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,点B的横坐标为,点B的坐标为,把代入直线,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 宁波市 慈溪市 2022 2023 学年 高考 数学 试卷 解析
限制150内