《江苏省镇江市丹阳市市级名校2023年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省镇江市丹阳市市级名校2023年中考数学四模试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1下列调查中,最适合采用全面调查(普查)的是()A对我市
2、中学生每周课外阅读时间情况的调查B对我市市民知晓“礼让行人”交通新规情况的调查C对我市中学生观看电影厉害了,我的国情况的调查D对我国首艘国产航母002型各零部件质量情况的调查2a0,函数y与yax2+a在同一直角坐标系中的大致图象可能是()ABCD3最小的正整数是()A0 B1 C1 D不存在4在RtABC中C90,A、B、C的对边分别为a、b、c,c3a,tanA的值为()ABCD35已知,两数在数轴上对应的点如图所示,下列结论正确的是( )ABCD6如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A(,-1)B(2,1)C(1,-)D
3、(1,)7如图,点A、B、C、D、O都在方格纸的格点上,若COD是由AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A30B45C90D1358根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A9B7C9D79如图是由5个相同的正方体搭成的几何体,其左视图是( )ABCD10如图,AB是的直径,点C,D在上,若,则的度数为ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角EAB=53,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧
4、,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m则篮球架横伸臂DG的长约为_m(结果保留一位小数,参考数据:sin53, cos53,tan53)12如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_13某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有_只14如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(3,2),(b,m),(
5、c,m),则点E的坐标是_15如图,CD是O直径,AB是弦,若CDAB,BCD=25,则AOD=_16分解因式:2x28xy+8y2= 三、解答题(共8题,共72分)17(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?18(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为
6、多少元?19(8分)如图,在矩形ABCD中,E是BC边上的点,垂足为F.(1)求证:;(2)如果,求的余切值.20(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?21(8分)已知:如图,在ABC中,AB13,AC8,cosBAC,BDAC,垂足为点D,E是B
7、D的中点,联结AE并延长,交边BC于点F(1)求EAD的余切值;(2)求的值22(10分)如图,求证:。23(12分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DEAM于点E求证:ADEMAB;求DE的长24如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD1米,A27,求跨度AB的长(精确到0.01米).参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大
8、,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影厉害了,我的国情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查2、D【解析】分a0和a0两种情况分类
9、讨论即可确定正确的选项【详解】当a0时,函数y 的图象位于一、三象限,yax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a0时,函数y的图象位于二、四象限,yax2+a的开口向上,交y轴的负半轴,D选项符合;故选D【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大3、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答4、B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在RtABC中C=90,A、B、C的对边分别为a、b、c,c=3a,
10、设a=x,则c=3x,b=2x.即tanA=.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.5、C【解析】根据各点在数轴上位置即可得出结论【详解】由图可知,ba0,A.ba0,a+b0,故本选项错误;B.ba0,故本选项错误;C.bab,故本选项正确;D.ba0,ba0,故本选项错误.故选C.6、A【解析】作ADy轴于D,作CEy轴于E,则ADO=OEC=90,得出1+1=90,由正方形的性质得出OC=AO,1+3=90,证出3=1,由AAS证明OCEAOD,得到OE=AD=1,CE=OD=,即可得出结果【详解】解:作ADy轴于D,作CEy轴于E,如图所示:则ADO=OEC=
11、90,1+1=90AO=1,AD=1,OD=,点A的坐标为(1,),AD=1,OD=四边形OABC是正方形,AOC=90,OC=AO,1+3=90,3=1在OCE和AOD中,OCEAOD(AAS),OE=AD=1,CE=OD=,点C的坐标为(,1)故选A【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键7、C【解析】根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,OC2+AO2=16,AC2=42=16,AOC是直角三角形,AOC=90故选C【点睛】考点:勾股定理逆定理.8、C【
12、解析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案【详解】当x=7时,y=6-7=-1,当x=4时,y=24+b=-1,解得:b=-9,故选C【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法9、A【解析】根据三视图的定义即可判断【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形故选A【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型10、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.二、填空题(本大题共6个小题,每小题3分,共18分
13、)11、1.1【解析】过点D作DOAH于点O,先证明ABCAOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.【详解】解:过点D作DOAH于点O,如图:由题意得CBDO,ABCAOD,=,CAB=53,tan53=,tanCAB=,AB=1.74m,CB=1.31m,四边形DGHO为长方形,DO=GH=3.05m,OH=DG,=,则AO=1.1875m,BH=AB=1.75m,AH=3.5m,则OH=AH-AO1.1m,DG1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.12、 【解析】试题解析:共6个数,小于5的有
14、4个,P(小于5)=故答案为13、1【解析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答【详解】解: 只故答案为:1【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比14、(3,2)【解析】根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标【详解】解:如图所示:A(0,a),点A在y轴上,C,D的坐标分别是(b,m),(c,m),B,E点关于y轴对称,B的坐标是:(3,2),点E的坐标是:(3,2)故答案为:(3,2)【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键15、50【解析】由CD是O的直径,弦ABCD,根据垂径定理的即可求得=,
15、又由圆周角定理,可得AOD=50【详解】CD是O的直径,弦ABCD,=,BCD=25=,AOD=2BCD=50,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.16、1(x1y)1【解析】试题分析:1x18xy+8y1=1(x14xy+4y1)=1(x1y)1故答案为:1(x1y)1考点:提公因式法与公式法的综合运用三、解答题(共8题,共72分)17、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x2
16、6当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键18、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案试题解析:解:(1)设商
17、场应购进A型台灯x盏,则B型台灯为(100x)盏,根据题意得,30x+50(100x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(4530)x+(7050)(100x),=15x+200020x,=5x+2000,B型台灯的进货数量不超过A型台灯数量的3倍,100x3x,x25,k=50,x=25时,y取得最大值,为525+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元考点:1一元一次方程的应用;2一次函数的应用19、(1)见解析;(
18、2).【解析】(1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【详解】解:(1)证明:四边形是矩形,在和中,;(2),设,.【点睛】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.【解析】(1)根据统计图即可得出结论; (2)先计算出优秀的学生,再补齐统计图即可;(3)根据图2的数值计算即可得出结论.【详解】(1)本班有学生:2050%=40(名),本班优秀的学生有:404030%204=4(名),
19、答:本班有4名同学优秀;(2)成绩一般的学生有:4030%=12(名),成绩优秀的有4名同学,补全的条形统计图,如图所示;(3)300050%=1500(名),答:该校3000人有1500人成绩良好【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.21、(1)EAD的余切值为;(2)=.【解析】(1)在RtADB中,根据AB=13,cosBAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求EAD的余切即可;(2)过D作DGAF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3
20、x,AD=5x,再由EFDG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)BDAC,ADE=90,RtADB中,AB=13,cosBAC=,AD=5, 由勾股定理得:BD=12,E是BD的中点, ED=6, EAD的余切=;(2)过D作DGAF交BC于G,AC=8,AD=5, CD=3,DGAF, =,设CD=3x,AD=5x,EFDG,BE=ED, BF=FG=5x,=.【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.22、见解析【解析】据1=2可
21、得BAC=EAD,再加上条件AB=AE,C=D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角23、(1)证明见解析;(2). 【解析】试题分析:利用矩形角相等的性质证明DAEAMB.试题解析:(1)证明:四边形ABCD是矩形,ADBC,DAE=AMB,又DEA=B=90,DAEAMB.(2)由(1)知DAEAMB,DE:AD=AB:AM,M是边BC的中点,BC=6,BM=3,又AB=4,B=90,AM=5,DE:6=4:5,DE=24、AB3.93m【解析】想求得AB长,由等腰三角形的三线合一定理可知AB2AD,求得AD即可,而AD可以利用A的三角函数可以求出【详解】ACBC,D是AB的中点,CDAB,又CD1米,A27,ADCDtan271.96,AB2AD,AB3.93m【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB
限制150内