浙江省温州市永嘉县2022-2023学年中考冲刺卷数学试题含解析.doc
《浙江省温州市永嘉县2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市永嘉县2022-2023学年中考冲刺卷数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )ABCD2甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图
2、所示根据图象信息,下列说法正确的是( )A甲的速度是4km/hB乙的速度是10km/hC乙比甲晚出发1hD甲比乙晚到B地3h3小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( )A众数是6吨B平均数是5吨C中位数是5吨D方差是4如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内)在E处测得建筑物顶端A的仰角为24,则建筑物AB的高度约为(参考数据:sin240.41,cos240
3、.91,tan24=0.45)()A21.7米B22.4米C27.4米D28.8米5如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD6如图,AB是O的直径,AB8,弦CD垂直平分OB,E是弧AD上的动点,AFCE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A4+3B4+C+D+37如图,已知ABC中,C=90,若沿图中虚线剪去C,则1+2等于( )A90B135C270D3158下面四个几何体: 其中,俯视图是四边形的几何体个数是()A1B2C3D4
4、9边长相等的正三角形和正六边形的面积之比为( )A13B23C16D110一、单选题如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D125二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是_12若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)_ 0,(填“”、“”或“”)13因式分解:3a36a2b+3ab2_14孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,
5、3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为_15如图,边长为6的菱形ABCD中,AC是其对角线,B=60,点P在CD上,CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 16等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_秒三、解答题(共8题,共72分)17(8分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,且(1)用含的代数式表示;(2)连结交于点,若,求的长
6、18(8分)计算:3tan30+|2|(3)0(1)2018.19(8分)如图,将连续的奇数1,3,5,7按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示(1)计算:若十字框的中间数为17,则a+b+c+d=_(2)发现:移动十字框,比较a+b+c+d与中间的数猜想:十字框中a、b、c、d的和是中间的数的_;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由20(8分)如图,在ABC中,ACB90,ABC10,CDE是等边三角
7、形,点D在边AB上(1)如图1,当点E在边BC上时,求证DEEB;(2)如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长21(8分)()如图已知四边形中,BC=b,求:对角线长度的最大值;四边形的最大面积;(用含,的代数式表示)()如图,四边形是某市规划用地的示意图,经测量得到如下数据:,请你利用所学知识探索它的最大面积(结果保留根号)22(10分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画
8、比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为 人;(2)如图1项目D所在扇形的圆心角等于 ; (3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.23(12分)如图,在平面直角坐标系中,点O为坐标原点,已知ABC三个定点坐标分别为A(4,1),B(3,3),C(1,2)画出ABC关于x轴对称的A1B1C1,点A,B,C的对称点分
9、别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出CC1C2的面积是 24A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可【详解】解:由俯视图可知,几何体共
10、有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:故选:C【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键2、C【解析】甲的速度是:204=5km/h;乙的速度是:201=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C3、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果
11、这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数一般地设n个数据,x1,x2,xn的平均数为,则方差S2= (x1)2+(x2)2+(xn)2数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数4、A【解析】作BMED交ED的延长线于M,CNDM于N首先解直角三角形RtCDN,求出CN,DN,再根据tan24=,构建方程即可解决问题.【详解】作BMED交ED的延长线于M,CNDM于N在RtCDN中,设CN=4k,DN=3k,CD=10,(3k)2+(4k)2=100,k=2,CN=
12、8,DN=6,四边形BMNC是矩形,BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在RtAEM中,tan24=,0.45=,AB=21.7(米),故选A【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE
13、,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.6、A【解析】连AC,OC,BC线段CF扫过的面积扇形MAH的面积+MCH的面积,从而证明即可解决问题【详解】如下图,连AC,OC,BC,设CD交AB于H,CD垂直平分线段OB,
14、COCB,OCOB,OCOBBC,AB是直径,点F在以AC为直径的M上运动,当E从A运动到D时,点F从A运动到H,连接MH,MAMH,CF扫过的面积为,故选:A【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.7、C【解析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:四边形的内角和为360,直角三角形中两个锐角和为90,1+2=360(A+B)=36090=270故选:C【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360.8、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何
15、体有正方体和三棱柱,故选B考点:简单几何体的三视图9、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a过A作ADBC于D,则BAD=30,AD=ABcos30=1a=a,SABC=BCAD=1aa=a1连接OA、OB,过O作ODABAOB=20,AOD=30,OD=OBcos30=1a=a,SABO=BAOD=1aa=a1,正六边形的面积为:2a1, 边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2故选C点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键10、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 温州市 永嘉县 2022 2023 学年 中考 冲刺 数学试题 解析
限制150内