浙江省温州市鹿城区第二十三中学2023年中考数学最后冲刺模拟试卷含解析.doc
《浙江省温州市鹿城区第二十三中学2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市鹿城区第二十三中学2023年中考数学最后冲刺模拟试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,已知ABC,按以下步骤作图:分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;作直线 MN 交 AB 于点 D,连接 CD若 CD=AC,A=50
2、,则ACB 的度数为( )A90B95C105D1102已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )A平均数B标准差C中位数D众数3为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户)1234月用电量(度/户)30425051那么关于这10户居民月用电量(单位:度),下列说法错误的是()A中位数是50B众数是51C方差是42D极差是214小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥
3、堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达若设走路线一时的平均速度为x千米/小时,根据题意,得ABCD5如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD6如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D97A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米
4、/时,则可列方程()ABC +49D8的化简结果为A3BCD99下列计算正确的是( )A2xx1Bx2x3x6C(mn)2m2n2D(xy3)2x2y6103点40分,时钟的时针与分针的夹角为()A140B130C120D110二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在长方形ABCD中,AFBD,垂足为E,AF交BC于点F,连接DF图中有全等三角形_对,有面积相等但不全等的三角形_对12如图,RtABC中,BAC=90,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_13如图,在ABC中,BD和CE是ABC的两条角平分线若A52,则12的度
5、数为_14函数中,自变量x的取值范围是 15如图,在ABC中,AB=2,BC=3.5,B=60,将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_16在实数2、0、1、2、中,最小的是_三、解答题(共8题,共72分)17(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树
6、苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?18(8分)如图,在ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与O相交于点F若的长为,则图中阴影部分的面积为_19(8分) (1)解方程组(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.20(8分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90,ADC=60,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中
7、,BAD=BCD=90,ABC=135,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 21(8分)如图,一次函数的图象与反比例函数的图象交于,B两点(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围22(10分)如图,RtABC中,ABC90,点D,F分别是AC,AB的中点,CEDB,BEDC(1)求证:四边形DBEC是菱形;(2)若AD3, DF1,求四边形DBEC面积23(12分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知AEF90(1)求证:;(2)平行
8、四边形ABCD中,E是边BC上一点,F是边CD上一点,AFEADC,AEF90如图2,若AFE45,求的值;如图3,若ABBC,EC3CF,直接写出cosAFE的值24已知. (1)化简A;(2)如果a,b 是方程的两个根,求A的值参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据等腰三角形的性质得到CDA=A=50,根据三角形内角和定理可得DCA=80,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到B=BCD,根据三角形外角性质可知B+BCD=CDA,进而求得BCD=25,根据图形可知ACB=ACD+BCD,即可解
9、决问题.【详解】CD=AC,A=50CDA=A=50CDA+A+DCA=180DCA=80根据作图步骤可知,MN垂直平分线段BCBD=CDB=BCDB+BCD=CDA2BCD=50BCD=25ACB=ACD+BCD=80+25=105故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.2、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差
10、2,只有标准差没有发生变化.故选B.考点:统计量的选择3、C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2=42.1故选C考点:1.方差;2.中位数;3.众数;4.极差4、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路
11、线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程解:设走路线一时的平均速度为x千米/小时,故选A5、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况6、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是AB
12、C的中位线,BC=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.7、A【解析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】轮船在静水中的速度为x千米/时,顺流航行时间为:,逆流航行时间为:,可得出方程:,故选:A【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键8、A【解析】试题分析:根据二次根式的计算化简可得:故选A考点:二次根式的化简9、D【解析】根据合并同类项的法则,积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 温州市 城区 第二十三 中学 2023 年中 数学 最后 冲刺 模拟 试卷 解析
限制150内