湖南省邵阳市2022-2023学年中考试题猜想数学试卷含解析.doc
《湖南省邵阳市2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省邵阳市2022-2023学年中考试题猜想数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在RtABC中,ACB=90,点D,E分别是AB,BC的中点,点F是BD的中点若AB=10,则EF=()A2.5B3C4D52如图所示的几何体的俯视图是( )ABCD3如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB100米,BC200米为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间
3、4如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿ABC的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示ADP的面积y(cm2)关于x(cm)的函数关系的图象是()ABCD5如图,ABC纸片中,A56,C88沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD则BDE的度数为( )A76B74C72D706如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D547一、单选题如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D1258世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0
4、.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.561019对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D10某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD11下列图形不是正方体展开图的是()ABCD12已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共2
5、4分)13一个凸多边形的内角和与外角和相等,它是_边形14计算:()=_15|1|=_16若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是_17点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .18一元二次方程x(x2)=x2的根是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图这组成绩的众数是 ;求这组成绩的方差
6、;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数20(6分)如图(1),P 为ABC 所在平面上一点,且APB=BPC=CPA=120,则点 P 叫做ABC 的费马点(1)如果点 P 为锐角ABC 的费马点,且ABC=60求证:ABPBCP;若 PA=3,PC=4,则 PB= (2)已知锐角ABC,分别以 AB、AC 为边向外作正ABE 和正ACD,CE 和 BD相交于 P 点如图(2)求CPD 的度数;求证:P 点为ABC 的费马点21(6分)如图所示,已知,试判断与的大小关系,并说明理由.22(8分)如图1,矩形ABC
7、D中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,F30.(1)求证:BECE(2)将EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)求证:BEMCEN;若AB2,求BMN面积的最大值;当旋转停止时,点B恰好在FG上(如图3),求sinEBG的值.23(8分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其
8、中最省钱的购买方案24(10分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上(1)画出将ABC绕点B按逆时针方向旋转90后所得到的A1BC1;(2)画出将ABC向右平移6个单位后得到的A2B2C2;(3)在(1)中,求在旋转过程中ABC扫过的面积25(10分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少26(12分)如图1,将长为10的线段OA绕点O旋转90得到OB,点A的运动轨迹为,P是半径OB上一
9、动点,Q是上的一动点,连接PQ(1)当POQ 时,PQ有最大值,最大值为 ;(2)如图2,若P是OB中点,且QPOB于点P,求的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B恰好落在OA的延长线上,求阴影部分面积27(12分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0)(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A是点A关于原点O的对称点,如图1判断AAB的形状,并说明理由;平面内是
10、否存在点P,使得以点A、B、A、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】ACB=90,D为AB中点CD=点E、F分别为BC、BD中点.故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.2、D【解析】试题分析:根据俯视图的作法即可得出结论从上往下看该几何体的俯视图是D故选D考点:简单几何体的三视图.3、
11、A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理【详解】解:以点A为停靠点,则所有人的路程的和15100+103001(米),以点B为停靠点,则所有人的路程的和30100+102005000(米),以点C为停靠点,则所有人的路程的和30300+1520012000(米),当在AB之间停靠时,设停靠点到A的距离是m,则(0m100),则所有人的路程的和是:30m+15(100m)+10(300m)1+5m1,当在BC之间停靠时,设停靠点到B的距离为n,则(0n200),则总路程为30(100+n)+
12、15n+10(200n)5000+35n1该停靠点的位置应设在点A;故选A【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短4、B【解析】ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象【详解】解:当P点由A运动到B点时,即0x2时,y2xx,当P点由B运动到C点时,即2x4时,y222,符合题意的函数关系的图象是B;故选B【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围5、B【解析】直接利用三角形内角和定理得出ABC的度数,再利用翻折变换的性质得出BDE的度数【详解】解
13、:A=56,C=88,ABC=180-56-88=36,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,CBD=DBE=18,C=DEB=88,BDE=180-18-88=74故选:B【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键6、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质7、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,AC
14、F=ACD,即ECF=(ACB+ACD)=90,EFC为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形8、B【解析】0.056用科学记数法表示为:0.056=,故选B.9、B【解析】根据普查得到的调查结果比较准确,但所费人力
15、、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查10、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B11、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠
16、后上边没有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.12、B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: 抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b0,ac0.二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 邵阳市 2022 2023 学年 中考 试题 猜想 数学试卷 解析
限制150内