湖南省张家界市永定区2022-2023学年中考数学考前最后一卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《湖南省张家界市永定区2022-2023学年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省张家界市永定区2022-2023学年中考数学考前最后一卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,
2、则S关于t的图象大致为( )ABCD2如图,在O中,弦AC半径OB,BOC=50,则OAB的度数为()A25B50C60D303如图,半O的半径为2,点P是O直径AB延长线上的一点,PT切O于点T,M是OP的中点,射线TM与半O交于点C若P20,则图中阴影部分的面积为()A1+B1+C2sin20+D4估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间5如图,在64的正方形网格中,ABC的顶点均为格点,则sinACB=()AB2CD6若抛物线ykx22x1与x轴有两个不同的交点,则k的取值范围为()Ak1Bk1Ck1且k0Dk1且k07在平面直角坐标系中,已知点A(4,2),B(6
3、,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)8如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A、B.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A B C D 9如图所示,在平面直角坐标系中,抛物线y=x22x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OPAP的最小值为( ).A3BCD10如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AA
4、C=CDBOM=BMCA=ACDDA=BOD二、填空题(共7小题,每小题3分,满分21分)11如图,在RtABC中,C=90,AC=8,BC=1在边AB上取一点O,使BO=BC,以点O为旋转中心,把ABC逆时针旋转90,得到ABC(点A、B、C的对应点分别是点A、B、C、),那么ABC与ABC的重叠部分的面积是_12如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACDBAE;AF:BE2:1;S四边形AFOE:SCOD2:1其中正确的结论有_(填写所有正确结论的序号)13计算:的结果为
5、_14如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_15月球的半径约为1738000米,1738000这个数用科学记数法表示为_16如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为 .17瑞士的一位中学教师巴尔末从光谱数据,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门请你根据这个规律写出第9个数_三、解答题(共7小题,满分69分)18(10分)如图,轮船从点A处出发,先航行至位于
6、点A的南偏西15且点A相距100km的点B处,再航行至位于点A的南偏东75且与点B相距200km的点C处(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向(参考数据:)19(5分)(操作发现)(1)如图1,ABC为等边三角形,先将三角板中的60角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于30),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使DCE=30,连接AF,EF求EAF的度数;DE与EF相等吗?请说明理由;(类比探究)(2)如图2,ABC为等腰直角三角形,ACB=90,先将三角板的90角与AC
7、B重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于45),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使DCE=45,连接AF,EF请直接写出探究结果:EAF的度数;线段AE,ED,DB之间的数量关系20(8分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.21(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚
8、销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线23(12分)若关于的方程无解,求的值.24(14分)小新家、小华家和书店依次
9、在东风大街同一侧(忽略三者与东风大街的距离)小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_米/分,a=_;并在图中画出y2与x的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式(3)直接写出两人离小华家的距离相等时x的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等
10、腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题
11、的关键2、A【解析】如图,BOC=50,BAC=25,ACOB,OBA=BAC=25,OA=OB,OAB=OBA=25.故选A.3、A【解析】连接OT、OC,可求得COM=30,作CHAP,垂足为H,则CH=1,于是,S阴影=SAOC+S扇形OCB,代入可得结论【详解】连接OT、OC,PT切O于点T,OTP=90,P=20,POT=70,M是OP的中点,TM=OM=PM,MTO=POT=70,OT=OC,MTO=OCT=70,OCT=180-270=40,COM=30,作CHAP,垂足为H,则CH=OC=1,S阴影=SAOC+S扇形OCB=OACH+=1+,故选A.【点睛】本题考查了切线的性质
12、:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系4、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小5、C【解析】如图,由图可知BD=2、CD=1、BC=,根据sinBCA=可得答案【详解】解:如图所示,BD=2、CD=1,BC=,则sinBCA=,故选C【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理6、C【解析】根据抛物线ykx22x1与x轴有两个不同的交点,得出b24ac0,进而求出k的取值范围【详
13、解】二次函数ykx22x1的图象与x轴有两个交点,b24ac(2)24k(1)4+4k0,k1,抛物线ykx22x1为二次函数,k0,则k的取值范围为k1且k0,故选C.【点睛】本题考查了二次函数yax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.7、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,
14、-1)故选D【点睛】此题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k8、D【解析】分析:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA=3,然后根据平移规律即可求解详解:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,曲线段AB扫过的面积为9(图中的阴影部分),矩形ACD A的面积等于9,ACAA=
15、3AA=9,AA=3,新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1故选D点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA的长度是解题关键9、A【解析】连接AO,AB,PB,作PHOA于H,BCAO于C,解方程得到x22x=0得到点B,再利用配方法得到点A,得到OA的长度,判断AOB为等边三角形,然后利用OAP=30得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PHOA于H,BCAO于C,如图当y=0时x22
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 张家界市 永定 2022 2023 学年 中考 数学 考前 最后 一卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内