湖南省长沙市长郡中学2023届中考数学考试模拟冲刺卷含解析.doc
《湖南省长沙市长郡中学2023届中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市长郡中学2023届中考数学考试模拟冲刺卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1若正比例函数y=3x的图象经过A(2,y1),B(1,y2)两点,则y1与y2的大小关系为()Ay1y2By1y2Cy1y2Dy1y22某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中
2、的一个进行检查,则两个组恰好抽到同一个小区的概率是()ABCD3某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众数分别是( )A10,15B13,15C13,20D15,154如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果AEF的面积为2,那么四边形CDFE的面积等于( )A18B22C24D465下列立体图形中,主视图是三角形的是( )ABCD6如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A cmBcmCcmD cm7如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )AB
3、CD8如图,是的外接圆,已知,则的大小为ABCD9下列实数0,其中,无理数共有()A1个B2个C3个D4个10已知一个正多边形的一个外角为36,则这个正多边形的边数是()A8 B9 C10 D11二、填空题(本大题共6个小题,每小题3分,共18分)11如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为_海里(结果保留根号).12如图,C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(,0),M 是圆上一点,BMO=120C 圆心 C 的坐标是_13如图,在
4、ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则ACD的周长为 cm14如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_15已知ab1,那么a2b22b_16三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为_元(用含a、b的代数式表示)三、解答题(共8题,共72分)17(8分)如图,AEFD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:ABEDCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形18(8分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若A=D,C
5、D=2(1)求A的度数(2)求图中阴影部分的面积19(8分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式(4)直接写出两车相距300千米时的x值20(8分)已知关于x的方程x2(m2)x(2m1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。21(8分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线B
6、D上,转轴B到地面的距离BD=3m小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A处时,有ABAB(1)求A到BD的距离;(2)求A到地面的距离22(10分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围23(12分)如图,在RtABC中,C=90,翻折C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若CEF与ABC相似当AC=BC=2时,AD
7、的长为 ;当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,CEF与ABC相似吗?请说明理由24某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍具体情况如下表:甲种乙种丙种进价(元/台)120016002000售价(元/台)142018602280经预算,商场最多支出132000元用于购买这批电冰箱(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分别把点A(1
8、,y1),点B(1,y1)代入函数y3x,求出点y1,y1的值,并比较出其大小即可【详解】解:点A(1,y1),点B(1,y1)是函数y3x图象上的点,y16,y13,36,y1y1故选A【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式2、C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3
9、种,所以两个组恰好抽到同一个小区的概率为.故选:C点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比3、D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.4、B【解析】连接FC,先证明AEFBEC,得出AEEC=13,所以SEFC=
10、3SAEF,在根据点F是ABCD的边AD上的三等分点得出SFCD=2SAFC,四边形CDFE的面积=SFCD+ SEFC,再代入AEF的面积为2即可求出四边形CDFE的面积.【详解】解:ADBC,EAF=ACB,AFE=FBC;AEF=BEC,AEFBEC,=,AEF与EFC高相等,SEFC=3SAEF,点F是ABCD的边AD上的三等分点,SFCD=2SAFC,AEF的面积为2,四边形CDFE的面积=SFCD+ SEFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.5、A【解析】考查简单几何体的三视
11、图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看6、B【解析】试题解析:菱形ABCD的对角线 根据勾股定理, 设菱形的高为h,则菱形的面积 即 解得 即菱形的高为cm故选B7、B【解析】由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x
12、2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股
13、定理8、A【解析】解:AOB中,OA=OB,ABO=30;AOB=180-2ABO=120;ACB=AOB=60;故选A9、B【解析】根据无理数的概念可判断出无理数的个数【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数10、C【解析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是36036=10,故选C.考点:多边形的内角和外角.二、填空题(本大题共6个小题,每小题3分,共18分)11、10海里【解析】本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程【详解】由已知可得:A
14、C=600.5=30海里,又甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30,BAC=90,又乙船正好到达甲船正西方向的B点,C=30,AB=ACtan30=30=10海里答:乙船的路程为10海里故答案为10海里【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键12、(,)【解析】连接AB,OC,由圆周角定理可知AB为C的直径,再根据BMO=120可求出BAO以及BCO的度数,在RtCOD中,解直角三角形即可解决问题;【详解】连接AB,OC,AOB=90,AB为C的直径,BMO=120,BAO=60,BCO=2BAO=120,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省 长沙 市长 中学 2023 中考 数学 考试 模拟 冲刺 解析
限制150内