浙江省越崎中学2023届高考数学一模试卷含解析.doc
《浙江省越崎中学2023届高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省越崎中学2023届高考数学一模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图
2、像向左平移个单位可得函数的图像2若,满足约束条件,则的最大值是( )ABC13D3已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )ABCD4函数y=sin2x的图象可能是ABCD5已知条件,条件直线与直线平行,则是的( )A充要条件B必要不充分条件C充分不必要条件D既不充分也不必要条件6大衍数列,米源于我国古代文献乾坤谱中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,则大衍数列中奇
3、数项的通项公式为( )ABCD7记递增数列的前项和为.若,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD8双曲线的渐近线方程为( )ABCD9如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )ABCD10函数在上的图象大致为( )ABCD11已知,则,的大小关系为( )ABCD12若,则的虚部是A3BCD二、填空题:本题共4小题,每小题5分,共20分。13某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为_.14若向量满足,则实数的取值范围是_.15在直角
4、坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_.16某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)等差数列的公差为2, 分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数列满足,求数列的前2020项的和18(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道
5、题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值: 0.100.050.0250.010
6、0.0050.001 2.7063.8415.0246.6357.87910.82819(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.20(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.21(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和22(10分)已知函数.(1)证明:当时,;(2)若函数有三个零点,求实数的取值范围.参考答案一、选择题:本题共12小
7、题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.2、C【解析】由已知画出可行域,利用目标函数的几何意义求最大值【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即故选:【点睛】
8、本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题3、A【解析】设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: , 化简得,即.故选:A【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.4、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数
9、图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复5、C【解析】先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.6、B【解析】直接代入检验,排除其中三个即可【详解】由题意,排除D,排除A,C同时B也满足,故选:B【点睛】本题考查由数列的项
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 中学 2023 高考 数学 试卷 解析
限制150内