潍坊市重点中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《潍坊市重点中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《潍坊市重点中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路
2、口的分配方案共有( )A12种B24种C36种D48种2设数列是等差数列,.则这个数列的前7项和等于( )A12B21C24D363已知集合,集合,则()ABCD4设函数恰有两个极值点,则实数的取值范围是( )ABCD5已知正四面体的内切球体积为v,外接球的体积为V,则( )A4B8C9D276已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A2B5CD7设全集U=R,集合,则()ABCD8执行如图所示的程序框图,则输出的的值是( )A8B32C64D1289若为虚数单位,则复数,则在复平面内对应的点位于( )A第一象限B第二象限C
3、第三象限D第四象限10已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-211五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD12记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间二、填空题:本题共4小题,每小题5分,共20分。13过直线上一点作圆的两条切线,切点分别为,则的最小值是_.14已知,则_.(填“”或“=”或“”).15已知实数,满足,则的最大值为_.16记数列的前项和为,已知,且.若,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、
4、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为cos(+)1(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M (2,0),若直线l与曲线C相交于P、Q两点,求的值18(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.19(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数
5、列的前项和,求使成立的正整数的值20(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,求证:直线恒过一个定点.21(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.22(10分)已知数列满足,且,成等比数列(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,求数列的前n项和参考答案一、
6、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.2、B【解析】根据等差数列的性质
7、可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,所以,即,又,所以,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.3、D【解析】可求出集合,然后进行并集的运算即可【详解】解:,;故选【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算4、C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以
8、函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.5、D【解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎
9、体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.6、D【解析】根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.7、A【解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【详解】,则,故选:A【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题8、C【解析】根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 潍坊市 重点中学 2022 2023 学年 高考 全国 统考 预测 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内