《湖北省恩施州利川市2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省恩施州利川市2023届中考适应性考试数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图,ABCD,FEDB,垂足为E,150,则2的度数是( )A60B50C40D302下列各数中是无理数的是( )Acos60BC半径为1cm的圆周长D3如图1,在ABC中,D、E分别是AB、AC的中点,将ADE沿线段DE向下折叠,得到图1下列关于图1的四个结论中,不一定成立的是()A点A落在BC边的中点BB+1+C=180CDBA是等腰三角形DDEBC4若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak5Bk55已知一次函数yx+2的图象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11),则m的值为()A2B1C1D26扇形的半径为30
3、cm,圆心角为120,用它做成一个圆锥的侧面,则圆锥底面半径为( )A10cmB20cmC10cmD20cm7方程x23x+20的解是()Ax11,x22Bx11,x22Cx11,x22Dx11,x228已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()Ab24acBax2+bx+c6C若点(2,m)(5,n)在抛物线上,则mnD8a+b=09关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,10已知,如图,AB是O的直径,点D,C在O上,连接AD、BD、DC、AC,如果BA
4、D25,那么C的度数是()A75B65C60D5011下列计算正确的是()A()28B+6C()00D(x2y)312如图,在O中,弦AB=CD,ABCD于点E,已知CEED=3,BE=1,则O的直径是()A2BC2D5二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,AD、BE分别是BC、AC两边中线,则=_14要使式子有意义,则的取值范围是_15因式分解:x24= 16若分式方程有增根,则m的值为_17计算:2cos60+(5)=_.18分解因式:x24=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,梯形
5、ABCD中,ADBC,DEAB,与对角线交于点,且FG=EF.(1)求证:四边形是菱形;(2)联结AE,又知ACED,求证: .20(6分)如图,O的直径AD长为6,AB是弦,CDAB,A=30,且CD=(1)求C的度数;(2)求证:BC是O的切线21(6分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由22(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式
6、(1),得 ;(II)解不等式(2),得 ;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为 23(8分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率24(10分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下成绩/分1201111101011009190以下成绩等级ABCD请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频
7、数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?25(10分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(
8、3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.26(12分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图1,当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当M
9、CE的面积等于BCO面积的倍时,直接写出此时点E的坐标27(12分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,五个等级将所得数据绘制成如下统计图根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在_等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:FEDB,DEF=90,1=50,D=9050=4
10、0,ABCD,2=D=40故选C考点:平行线的性质2、C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为,所以A选项中的数是有理数,不能选A;B选项中,因为是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;D选项中,因为,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.3、A【解析】根据折叠的性质明确对应关系,易得A=1,DE是ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确【详解】根据题意可知DE是三角形ABC的中位线,
11、所以DEBC;B+1+C=180;BD=AD,DBA是等腰三角形故只有A错,BACA故选A【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质还涉及到翻折变换以及中位线定理的运用(1)三角形的外角等于与它不相邻的两个内角和(1)三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180这一隐含的条件通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力解答此类题最好动手操作4、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B5、C【解析】根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点
12、的坐标即可得出结论【详解】一次函数yx+2的图象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11),设旋转后的函数解析式为yx1,在一次函数yx+2中,令y1,则有x+21,解得:x4,即一次函数yx+2与x轴交点为(4,1)一次函数yx1中,令y1,则有x11,解得:x2,即一次函数yx1与x轴交点为(2,1)m1,故选:C【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式本题属于基础题,难度不大6、A【解析】试题解析:扇形的弧长为:=20cm,圆锥底面半径为202=10cm,故选A考点:圆锥的计算7、A【解析】将方程左边的多项式利用十字相乘法分解因式,然
13、后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解【详解】解:原方程可化为:(x1)(x1)0,x11,x11故选:A【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解8、C【解析】观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且12,所以可得mn,选项C
14、错误; 因对称轴 ,即可得8a+b=0,选项D正确,故选C.点睛:本题主要考查了二次函数y=ax2+bx+c图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中9、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是
15、解题关键10、B【解析】因为AB是O的直径,所以求得ADB=90,进而求得B的度数,又因为B=C,所以C的度数可求出解:AB是O的直径,ADB=90BAD=25,B=65,C=B=65(同弧所对的圆周角相等)故选B11、D【解析】各项中每项计算得到结果,即可作出判断【详解】解:A原式=8,错误;B原式=2+4,错误;C原式=1,错误;D原式=x6y3= ,正确故选D【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键12、C【解析】作OHAB于H,OGCD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可【详解】解:作OHAB于H,OGCD于G,连
16、接OA,由相交弦定理得,CEED=EABE,即EA1=3,解得,AE=3,AB=4,OHAB,AH=HB=2,AB=CD,CEED=3,CD=4,OGCD,EG=1,由题意得,四边形HEGO是矩形,OH=EG=1,由勾股定理得,OA=,O的直径为,故选C【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【详解】AE=EC,BD=CD,DEAB,DE=AB,EDCABC,故答案是:【点睛】考查相似三角形的判定和性
17、质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理14、【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x0,解得:x2,故答案为x2.15、(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x24=(x+2)(x2)考点:因式分解-运用公式法16、-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值【详解】方程两边都乘(x-1),得x-1(x-1)=-m原方程增根为x=1,把x=1代入整式方程,得m=-1,故答案为:-1【点睛】本题考查了分式方
18、程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值17、1【解析】解:原式=12+1=1故答案为118、(x+2)(x2)【解析】【分析】直接利用平方差公式进行因式分解即可【详解】x24=x2-22=(x+2)(x2),故答案为:(x+2)(x2)【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形再由平行线分线段
19、成比例定理得到:, ,即可得到结论;(2)连接,与交于点由菱形的性质得到,进而得到 ,即有,得到,由相似三角形的性质即可得到结论详解:(1) ,四边形是平行四边形,同理 得:,四边形是菱形(2)连接,与交于点四边形是菱形,得 同理又是公共角,点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质灵活运用菱形的判定与性质是解题的关键20、(1)60;(2)见解析【解析】(1)连接BD,由AD为圆的直径,得到ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的
20、值,即可确定出C的度数;(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出ABC度数,由ABCABO度数确定出OBC度数为90,即可得证;【详解】(1)如图,连接BD,AD为圆O的直径,ABD=90,BD=AD=3,CDAB,ABD=90,CDB=ABD=90,在RtCDB中,tanC=,C=60;(2)连接OB,A=30,OA=OB,OBA=A=30,CDAB,C=60,ABC=180C=120,OBC=ABCABO=12030=90,OBBC,BC为圆O的切线【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键21、ADE是
21、等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC先证明CD=DA=DB,得到DAC=DCA,由ACAC即可得到DAE=DEA由此即可判断DAE的形状由EFAB推出CEF=EAD,EFC=ADC=ADE,再根据AD=DE=EF即可证明试题解析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC理由:BCA是直角三角形,ACB=90,AD=DB,CD=DA=DB,DAC=DCA,ACAC,DAE=A,DEA=DCA,DAE=DEA,DA=DE,ADE是等腰三角形四边形DEFD是菱形,EF=DE=DA,EFDD,CEF=DAE,EFC=
22、CDA,CDCD,ADE=ADC=EFC,在ADE和EFC中,ADEEFC考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质22、(I)x1;()x2;(III)见解析;()x1【解析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集【详解】(I)解不等式(1),得x1;()解不等式(2),得x2;()把不等式(1)和(2)解集在数轴上表示出来,如下图所示:()原不等式组的解集为x1【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键23、 (1);(2).【解析】(1)直接
23、利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解【详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;故答案为:;(2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白球的概率=【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率24、(1)1人;补图见解析;(2)10人;(3)610名.【解析】(1)用总人数乘以A所占的百分比,即可得到总人数;再用总人数乘以A等级人数所占比例可得其人数,继而根据各等级
24、人数之和等于总人数可得D等级人数,据此可补全条形图;(2)用总人数乘以(A的百分比+B的百分比),即可解答;(3)先计算出提高后A,B所占的百分比,再乘以总人数,即可解答【详解】解:(1)本次调查抽取的总人数为15=1(人),则A等级人数为1=10(人),D等级人数为1(10+15+5)=20(人),补全直方图如下:故答案为1(2)估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有1000=10(人);(3)A级学生数可提高40%,B级学生数可提高10%,B级学生所占的百分比为:30%(1+10%)=33%,A级学生所占的百分比为:20%(1+40%)=28%,1000(33%+28%
25、)=610(人),估计经过训练后九年级数学成绩在B以上(含B级)的学生可达610名【点睛】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小25、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润
26、等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-5
27、0=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点26、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)求出PBO+PDO=180,根据角平分线定义得出CBO=PBO,ODF=PDO,求出CBO+ODF=90,求出CBO=DFO,根据平行线的性质得出即可;(2)求出ABO=PDA,根据角平分线定义得出CBO=ABO,CDQ=PDO,求出CBO=CDQ,推出CDQ+DCQ
28、=90,求出CQD=90,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可【详解】(1)证明:如图1在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),AOB=90DPAB于点P,DPB=90,在四边形DPBO中,DPB+PBO+BOD+PDO=360,PBO+PDO=180,BC平分ABO,DF平分PDO,CBO=PBO,ODF=PDO,CBO+ODF=(PBO+PDO)=90,在FDO中,OFD+ODF=90,CBO=DFO,DFCB(2)直线DF与CB的位置关系是:DFCB,证明:延长DF交CB于点Q,如图2,在ABO中,AOB=90,BAO+AB
29、O=90,在APD中,APD=90,PAD+PDA=90,ABO=PDA,BC平分ABO,DF平分PDO,CBO=ABO,CDQ=PDO,CBO=CDQ,在CBO中,CBO+BCO=90,CDQ+DCQ=90,在QCD中,CQD=90,DFCB(3)解:过M作MNy轴于N,M(4,-1),MN=4,ON=1,当E在y轴的正半轴上时,如图3,MCE的面积等于BCO面积的倍时,2OE+(2+4)1-4(1+OE)=24,解得:OE=,当E在y轴的负半轴上时,如图4,(2+4)1+(OE-1)4-2OE=24,解得:OE=,即E的坐标是(0,)或(0,-)【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度27、(1)C;(2)100【解析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400 =100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.
限制150内