《湖南省邵阳市邵阳县2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省邵阳市邵阳县2023届中考适应性考试数学试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D512如图,AOB45,OC是AOB的角平分线,PMOB,垂足为点M,PNOB,PN与OA相交于点N,那么的值等于()ABCD3在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )ABCD4共享单车为市民短距离出行带来了极大便利据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共
3、享单车2590000人次,其中2590000用科学记数法表示为( )A259104B25.9105C2.59106D0.2591075钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD6小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:西游记、施耐庵、安徒生童话、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )ABCD7已知关于x的一元二次方程mx22x1=0有两个不相等的实数根,则m的取值范围是( ).Am1且m0Bm1且m0Cm1Dm18下面调查中,适合
4、采用全面调查的是()A对南宁市市民进行“南宁地铁1号线线路”B对你安宁市食品安全合格情况的调查C对南宁市电视台新闻在线收视率的调查D对你所在的班级同学的身高情况的调查9如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )Aab0Bab 0CD10关于2、6、1、10、6的这组数据,下列说法正确的是( )A这组数据的众数是6B这组数据的中位数是1C这组数据的平均数是6D这组数据的方差是10二、填空题(共7小题,每小题3分,满分21分)11如图,在直角三角形ABC中,ACB=90,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两
5、部分,则这两部分面积之差的绝对值是_12一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_13如图,在OAB中,C是AB的中点,反比例函数y=(k0)在第一象限的图象经过A,C两点,若OAB面积为6,则k的值为_14已知一个多边形的每一个内角都等于108,则这个多边形的边数是 15如图,E是ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=_16将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,若以点,为顶点的三角形与相似,则的长度是_.17如图,ABC中,AD是中线,AE是角平分线,CFAE于F,AB=10,AC=6,则DF的长为_三
6、、解答题(共7小题,满分69分)18(10分)已知:如图,在梯形ABCD中,ADBC,AB=DC,E是对角线AC上一点,且ACCE=ADBC.(1)求证:DCA=EBC;(2)延长BE交AD于F,求证:AB2=AFAD19(5分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,求四边形AECF的面积20(8分)一次函数yx的图象如图所示,它与二次函数yax24axc的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关
7、系式;若CDAC,且ACD的面积等于10,求此二次函数的关系式21(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元求该省第二、三季度投资额的平均增长率22(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点求此抛物线的解析式;求C、D两点坐标及BCD的面积;若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.23(12分)已知是上一点,.如图,过点作的切线,与的延长线交于点,求的大小及的长;如图,为上一点,延长线与交于
8、点,若,求的大小及的长.24(14分)先化简,再求值:,其中x满足x22x2=0.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.2、B【解析】过点P作PEOA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得POM=OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出PNE=AOB,再根据直角三角形解答【详解】如图,过点P作PEOA于点E,OP是AOB的平分线,PEPM,PNOB,
9、POMOPN,PNEPON+OPNPON+POMAOB45,故选:B【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键3、B【解析】根据矩形的面积=长宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列
10、出方程是解题关键.4、C【解析】绝对值大于1的正数可以科学计数法,a10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.5、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案【详解】解:根据题意画图如下:共有12种等情况数,抽
11、到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是;故选D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比7、A【解析】一元二次方程mx22x1=0有两个不相等的实数根,m0,且224m(1)0,解得:m1且m0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac=0时
12、,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.8、D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台新闻在线收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大
13、,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查9、C【解析】本题要先观察a,b在数轴上的位置,得b-10a1,然后对四个选项逐一分析【详解】A、因为b-10a1,所以|b|a|,所以a+b0,故选项A错误;B、因为b0a,所以ab0,故选项B错误;C、因为b-10a1,所以+0,故选项C正确;D、因为b-10a1,所以-0,故选项D错误故选C【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数10、A【解析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中
14、位数为6,众数为6,数据的方差= (15)2+(25)2+(65)2+(65)2+(105)2=10.1故选A考点:方差;算术平均数;中位数;众数二、填空题(共7小题,每小题3分,满分21分)11、4【解析】连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍【详解】解:连接OP、OB,图形BAP的面积=AOB的面积+BOP的面积+扇形OAP的面积,图形BCP的面积=BOC的面积+扇形OCP的面积BOP的面积,又点P是半圆弧AC的中点,OA=OC,扇形OAP的面积=扇形OCP的面积,AOB的面积=BOC的面积,两部分面积之差的绝对值是 点睛:考查扇形面积和
15、三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.12、120【解析】设扇形的半径为r,圆心角为n利用扇形面积公式求出r,再利用弧长公式求出圆心角即可【详解】设扇形的半径为r,圆心角为n由题意:,r4,n120,故答案为120【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.13、4【解析】分别过点、点作的垂线,垂足分别为点、点,根据是的中点得到为的中位线,然后设,根据,得到,最后根据面积求得,从而求得.【详解】分别过点、点作的垂线,垂足分别为点、点,如图点为的中点,为的中位线,.故答案为:.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中
16、位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.14、1【解析】试题分析:多边形的每一个内角都等于108,每一个外角为72多边形的外角和为360,这个多边形的边数是:36072=115、4【解析】AE=ED,AE+ED=AD,ED=AD,四边形ABCD是平行四边形,AD=BC,AD/BC,DEFBCF,DF:BF=DE:BC=2:3,DF+BF=BD=10,DF=4,故答案为4.16、或2【解析】由折叠性质可知BF=BF,BFC与ABC相似,有两种情况,分别对两种情况进行讨论,设出BF=BF=x,列出比
17、例式方程解方程即可得到结果.【详解】由折叠性质可知BF=BF,设BF=BF=x,故CF=4-x当BFCABC,有,得到方程,解得x=,故BF=;当FBCABC,有,得到方程,解得x=2,故BF=2;综上BF的长度可以为或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.17、1【解析】试题分析:如图,延长CF交AB于点G,在AFG和AFC中,GAF=CAF,AF=AF,AFG=AFC,AFGAFC(ASA)AC=AG,GF=CF又点D是BC中点,DF是CBG的中位线DF=BG=(ABAG)=(ABAC)=1三、解答题(共7小题,满分69分)18、 (1)见解
18、析;(2)见解析.【解析】(1)由ADBC得DAC=BCA, 又ACCE=ADBC,ACDCBE ,DCA=EBC,(2)由题中条件易证得ABFDAC,又AB=DC,【详解】证明:(1)ADBC,DAC=BCA,ACCE=ADBC,,ACDCBE ,DCA=EBC,(2)ADBC,AFB=EBC,DCA=EBC,AFB=DCA,ADBC,AB=DC,BAD=ADC,ABFDAC,AB=DC,.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.19、(1)见解析;(2)【解析】(1)根据平行四边形的性质得出AB=CD,BC=AD,B=D,求出BE=DF,根据全等
19、三角形的判定推出即可;(2)求出ABE是等边三角形,求出高AH的长,再求出面积即可【详解】(1)证明:四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,在和中,();(2)作于H,四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,四边形AECF是平行四边形,四边形AECF是菱形,即是等边三角形,由勾股定理得:,四边形AECF的面积是【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键20、(1)点C(1,);(1)yx1x; yx11x【解析】试题分析:(1)求得二次函数yax14axc对称轴为直线
20、x1,把x1代入yx求得y=,即可得点C的坐标;(1)根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据SACD3即可求得m的值,即求得点A的坐标,把A.D的坐标代入yax14axc得方程组,解得a、c的值即可得二次函数的表达式.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,根据勾股定理用m表示出AC的长,根据ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a0,则点D在点C下方,求点D的坐标;第二种情况,若a0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入yax14axc即可求得函数表达式.试题解析
21、:(1)yax14axca(x1)14ac二次函数图像的对称轴为直线x1当x1时,yx,C(1,)(1)点D与点C关于x轴对称,D(1,),CD3.设A(m,m) (m1),由SACD3,得3(1m)3,解得m0,A(0,0).由A(0,0)、 D(1,)得解得a,c0.yx1x.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,AC(1m),CDAC,CD(1m).由SACD10得(1m)110,解得m1或m6(舍去),m1A(1,),CD5.若a0,则点D在点C下方,D(1,),由A(1,)、D(1,)得解得yx1x3.若a0,则点D在点C上方,D(1,),由A(1,)、D
22、(1,)得解得yx11x.考点:二次函数与一次函数的综合题.21、第二、三季度的平均增长率为20%【解析】设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)214.4万元建立方程求出其解即可【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)214.4,解得:x10.220%,x22.2(舍去)答:第二、三季度的平均增长率为20%【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)214.4建立方程是关键22、 (1)y=(x1)2+4
23、;(2)C(1,0),D(3,0);6;(3)P(1+,),或P(1,)【解析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标【详解】解:(1)、抛物线的顶点为A(1,4), 设抛物线的解析式y=a(x1)2+4,把点B(0,3)代入得,a+4=3, 解得a=1, 抛物线的解析式为y=(x1)2+4;(2)由(1)知,抛物线的解析式为y=(x1)2+4; 令y=0,则0=(x1)2+4, x
24、=1或x=3, C(1,0),D(3,0); CD=4,SBCD=CD|yB|=43=6;(3)由(2)知,SBCD=CD|yB|=43=6;CD=4, SPCD=SBCD,SPCD=CD|yP|=4|yP|=3, |yP|= , 点P在x轴上方的抛物线上,yP0, yP= , 抛物线的解析式为y=(x1)2+4; =(x1)2+4,x=1, P(1+ , ),或P(1,)【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.23、(),PA4;(),【解析】()易得OAC是等边三角形即AOC=60,又由PC是O的切线故PCOC,即OCP=90可得P的度数,由OC=4可得
25、PA的长度()由()知OAC是等边三角形,易得APC=45;过点C作CDAB于点D,易得AD=AO=CO,在RtDOC中易得CD的长,即可求解【详解】解:()AB是O的直径,OA是O的半径.OAC=60,OA=OC,OAC是等边三角形.AOC=60.PC是O的切线,OC为O的半径,PCOC,即OCP=90P=30.PO=2CO=8.PA=PO-AO=PO-CO=4.()由()知OAC是等边三角形,AOC=ACO=OAC=60AQC=30.AQ=CQ,ACQ=QAC=75ACQ-ACO=QAC-OAC=15即QCO=QAO=15.APC=AQC+QAO=45.如图,过点C作CDAB于点D.OAC是等边三角形,CDAB于点D,DCO=30,AD=AO=CO=2.APC=45,DCQ=APC=45PD=CD在RtDOC中,OC=4,DCO=30,OD=2,CD=2PD=CD=2AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用24、 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得详解:原式= = =,x2-2x-2=0,x2=2x+2=2(x+1),则原式=点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
限制150内