江西省崇仁县重点达标名校2023届中考数学五模试卷含解析.doc
《江西省崇仁县重点达标名校2023届中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省崇仁县重点达标名校2023届中考数学五模试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在下列交通标志中,是中心对称图形的是()ABCD2如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( ) ABCD3下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a54sin60的值为()ABCD5如图,在ABC中,AD是BC边的中线,ADC=30,将ADC沿AD折叠,使C点落在C的位置,若BC=4,则BC的长为()A2B2C4D36如图,在RtABC中,ABC=9
3、0,AB=6,BC=8,点E是ABC的内心,过点E作EFAB交AC于点F,则EF的长为( )ABCD7一个几何体的三视图如图所示,该几何体是A直三棱柱B长方体C圆锥D立方体8如图,点A、B、C在圆O上,若OBC=40,则A的度数为()A40B45C50D559如图,在平行四边形ABCD中,E是边CD上一点,将ADE沿AE折叠至ADE处,AD与CE交于点F,若B=52,DAE=20,则FED的度数为()A40B36C50D4510如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D911在,0,1这四个数中,最小的数是AB
4、C0D112某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若直角三角形两边分别为6和8,则它内切圆的半径为_14若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_15如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_16如图,AOB是直角三角形,AOB90,OB2OA,点A在反比例函数y的图象
5、上若点B在反比例函数y的图象上,则k的值为_17在ABC中,A:B:C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_cm18株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求该反比例函数的解析式;(1)求三角形CDE的面积20(6分)如图所示,点P位于等边的内部,且ACP=CBP(
6、1)BPC的度数为_;(2)延长BP至点D,使得PD=PC,连接AD,CD依题意,补全图形;证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积21(6分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程sA、sB;(2)在A出发后几小时,两人相距15km?22(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C求双曲线的解析式;点P在x轴上,如果ACP的面积
7、为3,求点P的坐标23(8分)如图,已知AB是O的弦,C是 的中点,AB=8,AC= ,求O半径的长24(10分)计算:|1|2sin45+25(10分)如图,ABC和ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EFCD与BE相等?若相等,请证明;若不相等,请说明理由;若BAC=90,求证:BF1+CD1=FD126(12分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是_
8、,女生收看“两会”新闻次数的中位数是_;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差该班级男生根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.27(12分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),
9、B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不
10、存在,说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C2、C【解析】由函数图象可知AB=22=4,BC=(6-2) 2=8,根据矩形的面积公式可求出【详解】由函数图象可知AB=22=4,BC=(6-2) 2=8,矩形的面积为48=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解ABP面积变化情况是解题的关键,属于中考常考题型3、C【解析】直接利用合并同类项法则以及单
11、项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键4、B【解析】解:sin60=故选B5、A【解析】连接CC,将ADC沿AD折叠,使C点落在C的位置,ADC=30,ADC=ADC=30,CD=CD,CDC=ADC+ADC=60,DCC是等边三角形,DCC=60,在ABC中,AD是BC边的中线,即BD=CD,CD=BD,DBC=DCB=CDC
12、=30,BCC=DCB+DCC=90,BC=4,BC=BCcosDBC=4=2,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键6、A【解析】过E作EGAB,交AC于G,易得CG=EG,EF=AF,依据ABCGEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论【详解】过E作EGBC,交AC于G,则BCE=CEGCE平分BCA,BCE=ACE,ACE=CEG,CG=EG,同理可得:EF=AFBCGE,ABEF,BCA=EGF,BAC=EFG,ABCGEFABC=9
13、0,AB=6,BC=8,AC=10,EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5kAC=10,3k+5k+4k=10,k=,EF=3k=故选A【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形7、A【解析】根据三视图的形状可判断几何体的形状【详解】观察三视图可知,该几何体是直三棱柱故选A本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键8、C【解析】根据等腰三角形的性质和三角形内角和定理求得BOC=100,再利用圆周角定理得到A=B
14、OC【详解】OB=OC,OBC=OCB又OBC=40,OBC=OCB=40,BOC=180-240=100,A=BOC=50故选:C【点睛】考查了圆周角定理在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半9、B【解析】由平行四边形的性质得出D=B=52,由折叠的性质得:D=D=52,EAD=DAE=20,由三角形的外角性质求出AEF=72,与三角形内角和定理求出AED=108,即可得出FED的大小【详解】四边形ABCD是平行四边形,D=B=52,由折叠的性质得:D=D=52,EAD=DAE=20,AEF=D+DAE=52+20=72,AED=180EADD=108,FED=10872=
15、36故选B【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出AEF和AED是解决问题的关键10、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,BC=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.11、A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案【详解】由正数大于零,零大于负数,得,最小的数是,
16、故选A【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键12、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程详解:设2016年的国内生产总值为1,2017年国内生产总值(GDP)比2016年增长了12%,2017年的国内生产总值为1+12%;2018年比2017年增长7%, 2018年的国内生产总值为(1+12%)(1+7%),这两年GDP年平均增长率为x%, 201
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 崇仁县 重点 达标 名校 2023 中考 数学 试卷 解析
限制150内