海南省海口五中重点达标名校2022-2023学年中考数学模拟预测题含解析.doc
《海南省海口五中重点达标名校2022-2023学年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《海南省海口五中重点达标名校2022-2023学年中考数学模拟预测题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是ABC
2、的()A三条高的交点B重心C内心D外心2如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D3如图,已知A、B两点的坐标分别为(2,0)、(0,1),C 的圆心坐标为(0,1),半径为1若D是C上的一个动点,射线AD与y轴交于点E,则ABE面积的最大值是A3BCD44下列说法: ;数轴上的点与实数成一一对应关系;2是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,其中正确的个数有( )A2个B3个C4个D5个5下列图形中,是正方体表面展开图的是( )ABCD6如图,点A为边
3、上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()ABCD7如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB1,CD3,那么EF的长是( )ABCD8在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD9如图给定的是纸盒的外表面,下面能由它折叠而成的是( )ABCD10如图,在下列条件中,不能判定直线a与b平行的是( )A1=2B2=3C3=5D3+4=180二、填空题(本大题共6个小题,每小题3分,共18分)11将绕点逆时针旋转到使、在同一直线上,若,则图中阴影部分面积为_.12如图,每个小正方形的边长为1,A、B、C是小正
4、方形的顶点,则ABC的正弦值为_13如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_14已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则该实数根是_15某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_16如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为_三、解答题(共8题,共72分)17(8分)勾股
5、定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c218(8分)先化简,再求值:,其中a是方程a(a+1)0的解19(8分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在
6、地面A、B两个探测点探测到C处有生命迹象已知A、B两点相距4米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(精确到0.1米,参考数据:)20(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角=37,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37=,cos37=,tan37=)(1)求把手端点A到BD的距离;(2)求CH的长.21(8分)问题探究(1)如图,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使APD为等腰三角形,那么请画出满足条件的一个等腰三角形APD,并求出此时
7、BP的长;(2)如图,在ABC中,ABC=60,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使EQF=90,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使AMB大约为60,就可以让监控装置的效果达到最佳,已知A=E=D=90,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使AMB=60?若存在,请求出符合条件的DM的长,若不存在,请说明理由22(10分)如图1,在圆中,垂直于弦,为垂足,作,与的
8、延长线交于.(1)求证:是圆的切线;(2)如图2,延长,交圆于点,点是劣弧的中点,求的长 .23(12分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面如图建立平面直角坐标系()为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标根据题意可知,该二次函数图象上三个点的坐标分别是_;()求这个二次函数的解析式和自变量的取值范围24如图,四边形ABCD中,E点在AD上,其中BAE=BCE=ACD=90,且BC=CE,求证:ABC与DEC全等参考答案一、选择题(共10小
9、题,每小题3分,共30分)1、D【解析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上【详解】三角形的三条垂直平分线的交点到中间的凳子的距离相等,凳子应放在ABC的三条垂直平分线的交点最适当故选D【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养想到要使凳子到三个人的距离相等是正确解答本题的关键2、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方
10、形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平
11、行线构造相似三角形也考查了角平分线的性质和正方形的性质3、B【解析】试题分析:解:当射线AD与C相切时,ABE面积的最大连接AC,AOC=ADC=90,AC=AC,OC=CD,RtAOCRtADC,AD=AO=2,连接CD,设EF=x,DE2=EFOE,CF=1,DE=,CDEAOE,=,即=,解得x=,SABE=故选B考点:1切线的性质;2三角形的面积4、C【解析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】,是错误的;数轴上的点与实数成一一对应关系,故说法正确;4,故-2是 的平方根,故说法正确;任何实数不是有理数就是无理数,故说法正确;两个无理数的和还是无理数,如 和 是错误的;
12、无理数都是无限小数,故说法正确;故正确的是共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有这样的数.5、C【解析】利用正方体及其表面展开图的特点解题【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体故选C【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形6、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案【详解】BDC=90,B+BCD=90,ACB
13、=90,即BCD+ACD=90,ACD=B=,A、在RtBCD中,sin=,故A正确,不符合题意;B、在RtABC中,sin=,故B正确,不符合题意;C、在RtACD中,sin=,故C正确,不符合题意;D、在RtACD中,cos=,故D错误,符合题意,故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边7、C【解析】易证DEFDAB,BEFBCD,根据相似三角形的性质可得= ,=,从而可得+=+=1然后把AB=1,CD=3代入即可求出EF的值【详解】AB、CD、EF都与BD垂直,ABCDEF,DEFDAB,BEFBCD,=
14、,=,+=+=1.AB=1,CD=3,+=1,EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.8、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.9、B【解析】将A、B、C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 海南省 海口 重点 达标 名校 2022 2023 学年 中考 数学模拟 预测 解析
限制150内