《湖南省新化县重点名校2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省新化县重点名校2023届中考考前最后一卷数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数y=ax2+bx+c(a0)的图象如图所示,下列说法:2a+b=0,当1x3时,y0;3a+c=0;若(x1,y
2、1)(x2、y2)在函数图象上,当0x1x2时,y1y2,其中正确的是()ABCD2如图的几何体中,主视图是中心对称图形的是()ABCD3如果k0,b0,那么一次函数y=kx+b的图象经过( )A第一、二、三象限B第二、三、四象限C第一、三、四象限D第一、二、四象限4O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D85如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3cm2C4cm2D5cm26-2的倒数是( )A-2BCD27为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线
3、图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点CD监测点D8下面的统计图反映了我市20112016年气温变化情况,下列说法不合理的是()A20112014年最高温度呈上升趋势B2014年出现了这6年的最高温度C20112015年的温差成下降趋势D2016年的温差最大9下列计算正确的是()A(a+2)(a2)a22B(a+1)(a2)a2+
4、a2C(a+b)2a2+b2D(ab)2a22ab+b210如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )ABCD11把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)212如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tanBAC的值为()AB1CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,OAC 和BAD 都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点 B,则OAC 与BAD 的面积之差 SOACSBAD 为_.14对于实
5、数a,b,我们定义符号maxa,b的意义为:当ab时,maxa,ba;当ab时,maxa,bb;如:max4,24,max3,33,若关于x的函数为ymaxx+3,x+1,则该函数的最小值是_15关于x的分式方程有增根,则m的值为_16某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg17抛物线y=(x3)2+1的顶点坐标是_18如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30,那么铁塔的高度AB=_米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或
6、演算步骤19(6分)如图,在矩形ABCD中,E是BC边上的点,垂足为F.(1)求证:;(2)如果,求的余切值.20(6分)如图,已知ABC中,AB=BC=5,tanABC=求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值21(6分)如图,抛物线yx2+bx+c与x轴交于点A(1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使BDQ是
7、以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由22(8分)如图,已知点E,F分别是ABCD的边BC,AD上的中点,且BAC=90(1)求证:四边形AECF是菱形;(2)若B=30,BC=10,求菱形AECF面积23(8分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F(1)证明:BOEDOF;(2)当EFAC时,求证四边形AECF是菱形24(10分)计算:解不等式组,并写出它的所有整数解25(10分)计算:|+(2017)02sin30+3126(12分)(1)计算:;(2)已知ab,求(a2)2+b(b2a)+4
8、(a1)的值27(12分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10
9、,请你探究a的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】函数图象的对称轴为:x=-=1,b=2a,即2a+b=0,正确;由图象可知,当1x3时,y0,错误;由图象可知,当x=1时,y=0,ab+c=0,b=2a,3a+c=0,正确;抛物线的对称轴为x=1,开口方向向上,若(x1,y1)、(x2,y2)在函数图象上,当1x1x2时,y1y2;当x1x21时,y1y2;故错误;故选B点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,
10、然后根据对称轴及抛物线与x轴交点情况进行推理2、C【解析】解:球是主视图是圆,圆是中心对称图形,故选C3、D【解析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限【详解】k0,一次函数y=kx+b的图象经过第二、四象限又b0时,一次函数y=kx+b的图象与y轴交与正半轴综上所述,该一次函数图象经过第一、二、四象限故选D【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交b=0时,直线过原点;b0时,直线与y轴负半轴
11、相交4、C【解析】根据题意可以求出这个正n边形的中心角是60,即可求出边数.【详解】O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.5、C【解析】延长AP交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APBEPB(ASA),SAPBSEPB,APPE,APC和CPE等
12、底同高,SAPCSPCE,SPBCSPBE+SPCESABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPBE+SPCESABC6、B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选8、C【解析】利用折线统计图结合相应数据,分别分
13、析得出符合题意的答案【详解】A选项:年最高温度呈上升趋势,正确;B选项:2014年出现了这6年的最高温度,正确;C选项:年的温差成下降趋势,错误;D选项:2016年的温差最大,正确;故选C【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键9、D【解析】A、原式=a24,不符合题意;B、原式=a2a2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a22ab+b2,符合题意,故选D10、C【解析】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C11、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x
14、22x+1)=ax(x1)2,故选D【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.12、B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到ABC为等腰直角三角形,即可求出所求【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,ABC为等腰直角三角形,BAC=45,则tanBAC=1,故选B【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键二、填空题:
15、(本大题共6个小题,每小题4分,共24分)13、【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设OAC和BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)点B在反比例函数y=在第一象限的图象上,(a+b)(a-b)=a2-b2=3SOACSBAD=a2-b2=【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.14、2【解析】试题分析:当x+3x+1,即:x1时,y=x+3,当x=1时,ymin
16、=2,当x+3x+1,即:x1时,y=x+1,x1,x1,x+12,y2,ymin=2,15、1【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.16、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17、 (3,1) 【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标详解:y=(x3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为
17、(3,1)故答案为(3,1)点睛:主要考查了抛物线顶点式的运用18、20【解析】在RtABC中,直接利用tanACB=tan30=即可.【详解】在RtABC中,tanACB=tan30=,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2).【解析】(1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【详解】解:(1)证明:四边形是矩形,在和中,;(2),设,.【点
18、睛】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)AC=;(2)【解析】【分析】(1)过A作AEBC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求【详解】(1)如图,过点A作AEBC,在RtABE中,tanABC=,AB=5,AE=3,BE=4,CE=BCBE=54=1,在RtAEC中,根据勾股定理得:AC=;(2)DF垂直平分BC,BD=CD,BF=CF=,
19、tanDBF=,DF=,在RtBFD中,根据勾股定理得:BD=,AD=5=,则【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.21、 (1) ;(2) 当m2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(1,0)、Q3(3,2)【解析】(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:yx+2,设点M(m,m+2),Q(m,m2m2),可得MQ=m2+m+4,根据平行四边形的性质可得QM=CD=4,即m
20、2+m+44可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,当BDQ=90时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),当DBQ=90时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2)【详解】(1)由题意知,点A(1,0),B(4,0)在抛物线yx2+bx+c上,解得:所求抛物线的解析式为 (2)由(1)知抛物线的解析式为,令x0,得y2点C的坐标为C(0,2)点D与点C关于x轴对称点D的坐标为D(0,2)设直线BD的解析式为:ykx+2且B(4,0)04k+2,解得:直线BD的解析式为:点P的坐标为(m,0),过点P作
21、x轴的垂线1,交BD于点M,交抛物线与点Q可设点M,Q MQ四边形CQMD是平行四边形QMCD4,即=4解得:m12,m20(舍去)当m2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)BQ2 DQ2 BD220当BDQ90时,则BD2+DQ2BQ2, 解得:m18,m21,此时Q1(8,18),Q2(1,0)当DBQ90时,则BD2+BQ2DQ2, 解得:m33,m44,(舍去)此时Q3(3,2)满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(1,0)、Q3(3,2)【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意
22、第3问分两种情形求解22、(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积试题解析:(1)证明:四边形ABCD是平行四边形,ADBC,AD=BC在RtABC中,BAC=90,点E是BC边的中点,AE=CE=BC同理,AF=CF=ADAF=CE四边形AECF是平行四边形平行四边形AECF是菱形(2)解:在RtABC中,BAC=90,B=30,BC=10,AC=5,AB=连接EF交于点O,ACEF于点O,点O是AC中点OE=
23、EF=菱形AECF的面积是ACEF=考点:1菱形的性质和面积;2平行四边形的性质;3解直角三角形23、(1)(2)证明见解析【解析】(1)根据矩形的性质,通过“角角边”证明三角形全等即可;(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形【详解】(1)证明:四边形ABCD是矩形,OB=OD,AECF,E=F(两直线平行,内错角相等),在BOE与DOF中,BOEDOF(AAS)(2)证明:四边形ABCD是矩形,OA=OC,又由(1)BOEDOF得,OE=OF,四边形AECF是平行四边形,又EFAC,四边形AECF是菱形24、(1);(1)0,1,1.【解析】(1)本题涉及
24、零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式11 ,7(1) ,解不等式得:x1,解不等式得:x1,不等式组的解集是:1x1故不等式组的整数解是:0,1,1【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键25、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12+=点睛:本题考查了实数的运算,用到的知
25、识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键26、(1);(1)1.【解析】(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将ab的值整体代入计算可得【详解】(1)原式=4+181=4+141=11;(1)原式=a14a+4+b11ab+4a4=a11ab+b1=(ab)1,当ab=时,原式=()1=1【点睛】本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解
26、的能力27、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大
27、值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题
限制150内