湖北省襄阳市襄城区重点达标名校2023年中考数学考前最后一卷含解析.doc
《湖北省襄阳市襄城区重点达标名校2023年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省襄阳市襄城区重点达标名校2023年中考数学考前最后一卷含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图1,一个扇形纸片的圆心角为90,半径
2、为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()ABCD2一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A50 B0.02 C0.1 D13如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D4设0k2,关于x的一次函数y=(k-2)x+2,当1x2时,y的最小值是()A2k-2 Bk-1 Ck Dk+15如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D306已知:如图,在扇形中,半
3、径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )ABCD7如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()ABCD8如图,菱形ABCD的对角线相交于点O,过点D作DEAC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,ABC=60,则AE的长为()ABCD9不等式5+2x 1的解集在数轴上表示正确的是( ).ABCD10估算的值在()A3和4之间B4和5之间C5和6之间D6和7之间二、填空题(共7小题,每小题3分,满分21分)11已知梯形ABCD,AD
4、BC,BC=2AD,如果,那么=_(用、 表示)12如图,在ABCD中,AD=2,AB=4,A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 (结果保留)13已知抛物线yx2上一点A,以A为顶点作抛物线C:yx2bxc,点B(2,yB)为抛物线C上一点,当点A在抛物线yx2上任意移动时,则yB的取值范围是_14如图,直线l1l2l3,等边ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角1=25,则边AB与直线l1的夹角2=_15计算的结果是_16计算:()0=_17已知整数k5,若ABC的边长均满足关于x的方程,则ABC的周长是 三、解答题
5、(共7小题,满分69分)18(10分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积19(5分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作E
6、Nx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标20(8分)()如图已知四边形中,BC=b,求:对角线长度的最大值;四边形的最大面积;(用含,的代数式表示)()如图,四边形是某市规划用地的示意图,经测量得到如下数据:,请你利用所学知识探索它的最大面积(结果保留根号)21(10分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,
7、交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由22(10分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30,看这栋楼底部C处的俯角为60,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC23(12分)观察规律并填空._(用含n的代数式表示,n 是正整数,且 n 2)24(14分)如图,BAO=90,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C
8、,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30,CD COD60,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理
9、,掌握扇形面积公式是解题的关键2、D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.3、A【解析】【分析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出【详解】轴,B两点纵坐标相同,设,则,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.4、A【解析】先根据0k1判断出k-1的符号,进而判断出函数的增减性,根据1x1即可得出结论【详解】0k1,k-10,此函数是减函数,1x1,当x=1时,y最小=1(k-1)+1=1k-1故选A【点睛】本题考查的是一次函数的性质,熟知一次函
10、数y=kx+b(k0)中,当k0,b0时函数图象经过一、二、四象限是解答此题的关键5、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理6、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公式弧长的公式 来求 的长【详解】解:如图,连接OD解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形
11、,DOB=60AOB=110,AOD=AOB-DOB=50,的长为 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处7、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,B,E是半圆弧的三等分点,EOAEOBB
12、OD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6,SABCBCAC6,BOE和ABE同底等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.8、C【解析】在菱形ABCD中,OC=AC,ACBD,DE=OC,DEAC,四边形OCED是平行四边形,ACBD,平行四边形OCED是矩形,在菱形ABCD中,ABC=60,ABC为等边三角形,AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在RtACE
13、中,由勾股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出COD=90,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.9、C【解析】先解不等式得到x-1,根据数轴表示数的方法得到解集在-1的左边【详解】5+1x1,移项得1x-4,系数化为1得x-1故选C【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心10、C【解析】由可知56,即可解出.【详解】56,故选C.【点睛
14、】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据向量的三角形法则表示出,再根据BC、AD的关系解答【详解】如图,=-=-,ADBC,BC=2AD,=(-)=-故答案为-【点睛】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键12、【解析】过D点作DFAB于点FAD=1,AB=4,A=30,DF=ADsin30=1,EB=ABAE=1阴影部分的面积=平行四边形ABCD的面积扇形ADE面积三角形CBE的面积=.故答案为:.13、ya1【解析】设点A的坐标为(m,n),由题意可知n=m1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 襄阳 襄城 重点 达标 名校 2023 年中 数学 考前 最后 一卷 解析
限制150内