《湖北省随州市高新区市级名校2023届中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省随州市高新区市级名校2023届中考五模数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在平面直角坐标系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)2如
2、图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定3下列图形中,既是中心对称图形又是轴对称图形的是()A正五边形 B平行四边形 C矩形 D等边三角形4下列事件中,属于必然事件的是( )A三角形的外心到三边的距离相等B某射击运动员射击一次,命中靶心C任意画一个三角形,其内角和是 180D抛一枚硬币,落地后正面朝上5如图,已知,那么下列结论正确的是( )ABCD6由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()ABCD7把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2
3、x21Cy2(x+1)2Dy2(x1)28在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD9如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD10如图,直线 AB 与 MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )A4 对 B5 对 C6 对 D7 对二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平面直角坐标系中,矩形ABCD的边AB:BC
4、=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x0)的图象经过点D,且与边BC交于点E,则点E的坐标为_12计算=_13学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_对.14如果关于x的方程x2+2axb2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_15因式分解:x210x+24=_16如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的正方形ABCD的周长为_三、解答题(共8题,共72分)17(8分)
5、已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于点B(4,0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由18(8分)如图,在RtABC中,C=90,BE平分ABC交AC于点E,点D在AB上,DEEB(1)求证:AC是BDE的外接圆的切线;(2)若AD=
6、2,AE=6,求EC的长19(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)20(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端
7、E的仰角为30,他又继续走下台阶到达C处,测得树的顶端的仰角是60,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45,已如A点离地面的高度AB4米,BCA30,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度21(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型 目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)
8、求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用22(10分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积23(12分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点将ACD绕点A顺时针方向旋转,得
9、ACD,记旋转角为(I)如图,连接BD,当BDOA时,求点D的坐标;(II)如图,当60时,求点C的坐标;(III)当点B,D,C共线时,求点C的坐标(直接写出结果即可)24某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际
10、进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移2、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的
11、比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点3、C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以
12、提高正确率.4、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、
13、A【解析】已知ABCDEF,根据平行线分线段成比例定理,对各项进行分析即可【详解】ABCDEF,故选A【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案6、A【解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.7、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向
14、上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键8、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键9、D【解析】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5
15、,故选D10、C【解析】由题意,AQNP,MNBQ,ACMDCN,CDNBDP,BPDBQA,ACMABQ,DCNABQ,ACMDBP,所以图中共有六对相似三角形故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、(-2,7)【解析】解:过点D作DFx轴于点F,则AOBDFA90,OAB+ABO90,四边形ABCD是矩形,BAD90,ADBC,OAB+DAF90,ABODAF,AOBDFA,OA:DFOB:AFAB:AD,AB:BC3:2,点A(3,0),B(0,6),AB:AD3:2,OA3,OB6,DF2,AF4,OFOA+AF7,点D的坐标为:(7,2),反比例函数的解析式为
16、:y,点C的坐标为:(4,8)设直线BC的解析式为:ykx+b,则解得: 直线BC的解析式为:yx+6,联立得: 或(舍去),点E的坐标为:(2,7)故答案为(2,7)12、1【解析】试题解析:3-2=1.13、1【解析】利用树状图展示所有1种等可能的结果数【详解】解:画树状图为:共有1种等可能的结果数故答案为1【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率14、1【解析】根据根的判别式求出=0,求出a1+b1=1,根据完全平方公式求出即可【详解】解:关于x的方程x1+1ax-b1+
17、1=0有两个相等的实数根,=(1a)1-41(-b1+1)=0,即a1+b1=1,常数a与b互为倒数,ab=1,(a+b)1=a1+b1+1ab=1+31=4,a+b=1,故答案为1【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键15、(x4)(x6)【解析】因为(4)(6)=24,(4)+(6)=10,所以利用十字相乘法分解因式即可.【详解】x210x+24= x210x+(4)(6)=(x4)(x6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.16、1【解析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形A
18、BCD的周长【详解】在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点A的横坐标是0,该抛物线的对称轴为直线x=,点B是这条抛物线上的另一点,且ABx轴,点B的横坐标是3,AB=|0(3)|=3,正方形ABCD的周长为:34=1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件三、解答题(共8题,共72分)17、(1);(2)详见解析;(3)为定值,=【解析】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),用待定系数法求解即可;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2
19、),由AOEOBF,可得到,然后表示出直线AB的解析式即可得到结论;(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 由PQON,可得ON=amt+at2,OM= amt+at2,然后把ON,OM,OC的值代入整理即可.【详解】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),解之得 ,;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),OAOB,AOE=OBF,AOEOBF,直线AB过点A(m,am2)、点B(n,an2),过点(0,);(3)作PQAB于点Q,设P(m,am2+c)、A(
20、t,0)、B(t,0),则at2+c=0, c= at2 PQON,ON=at(m+t)= amt+at2,同理:OM= amt+at2,所以,OM+ON= 2at2=2c=OC,所以,=.【点睛】本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.18、(1)证明见解析;(2)1【解析】试题分析:(1)取BD的中点0,连结OE,如图,由BED=90,根据圆周角定理可得BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心,再证明OEBC,得到AEO=C=90,于是可根据切线的判定定理判断AC是BDE的外接圆的切线;(2)设O的半径
21、为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OEBC得,然后根据比例性质可计算出EC试题解析:(1)证明:取BD的中点0,连结OE,如图,DEEB,BED=90,BD为BDE的外接圆的直径,点O为BDE的外接圆的圆心,BE平分ABC,CBE=OBE,OB=OE,OBE=OEB,EB=CBE,OEBC,AEO=C=90,OEAE,AC是BDE的外接圆的切线;(2)解:设O的半径为r,则OA=OD+DA=r+2,OE=r,在RtAEO中,AE2+OE2=AO2,62+r2=(r+2)2,解得r=2,OEBC,即,CE=1考点:1、切线的判定;2、勾股定理
22、19、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30=,BC=80千米,CD=BCsin30=80(千米),AC=(千米),AC+BC=80+40401.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)cos30=,BC
23、=80(千米),BD=BCcos30=80(千米),tan45=,CD=40(千米),AD=(千米),AB=AD+BD=40+4040+401.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.4109.2=27.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线20、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60,AEC30,得到AE16,根据EF=8求出x的值得到答案;(2
24、)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用NDP45得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30,AC8,ECD60,ACE是直角三角形,AFBD,CAF30,CAE60,AEC30,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则AMBP6,由(1)知CDCEAC4,BC4,PDBP+BC+CD6+4+46+8,NDP45,且NPD90,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30角所
25、对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.21、(1)大货车用8辆,小货车用7辆;(2)y=100x+1(3)见解析. 【解析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为7-(10-x)辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案【详解】(1)设大货车用x
26、辆,小货车用y辆,根据题意得:解得:大货车用8辆,小货车用7辆(2)y=800x+900(8-x)+400(10-x)+6007-(10-x)=100x+1(3x8,且x为整数)(3)由题意得:12x+8(10-x)100,解得:x5,又3x8,5x8且为整数,y=100x+1,k=1000,y随x的增大而增大,当x=5时,y最小,最小值为y=1005+1=9900(元)答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元22、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,所以DAC=A
27、CO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴影=SCOES扇形COB=33【点睛】本题考查了切
28、线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式23、(I)(10,4)或(6,4)(II)C(6,2)(III)C(8,4)C(,)【解析】(I)如图,当OBAC,四边形OBCA是平行四边形,只要证明B、C、D共线即可解决问题,再根据对称性确定D的坐标;(II)如图,当=60时,作CKAC于K解直角三角形求出OK,CK即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图,A(8,0),B(0,4),OB=4,OA=8,AC=OC=AC=4,当OBAC,四边
29、形OBCA是平行四边形,AOB=90,四边形OBCA是矩形,ACB=90,ACD=90,B、C、D共线,BDOA,AC=CO, BD=AD,CD=CD=OB=2,D(10,4),根据对称性可知,点D在线段BC上时,D(6,4)也满足条件综上所述,满足条件的点D坐标(10,4)或(6,4)(II)如图,当=60时,作CKAC于K在RtACK中,KAC=60,AC=4,AK=2,CK=2,OK=6,C(6,2)(III)如图中,当B、C、D共线时,由()可知,C(8,4)如图中,当B、C、D共线时,BD交OA于F,易证BOFACF,OF=FC,设OF=FC=x,在RtABC中,BC=8,在RTBO
30、F中,OB=4,OF=x,BF=8x,(8x)2=42+x2,解得x=3,OF=FC=3,BF=5,作CKOA于K,OBKC,=,=,KC=,KF=,OK=,C(,)【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题24、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为200
31、00元【解析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,经检验,m=1200是原分式方程的解,也符合题意,m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100x)=100x+20000,33x38,x为正整数,x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(14001200)(100x)=(k100)x+20000,当100k150时,y1随x的最大而增大,x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0k100时,y1随x的最大而减小,x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键
限制150内