《河北省2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省2023届中考试题猜想数学试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A B C D2如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与ABC相似的是ABCD3体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )ABCD4已知x=2,则代数式(7+4)x2+(2+)x+ 的值是()A0BC2+D25为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学
3、习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数是36如图是某个几何体的三视图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥7计算5x23x2的结果是( )A2x2B3x2C8x2D8x28如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2
4、,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)9下列分式是最简分式的是( )ABCD10下列运算结果正确的是( )A3a2a2 = 2Ba2a3= a6C(a2)3 = a6Da2a2 = a二、填空题(本大题共6个小题,每小题3分,共18分)11方程的解为 12将一副三角板如图放置,若,则的大小为_13如图,矩形中,将矩形沿折叠,点落在点处.则重叠部分的面积为_.14若+(y2018)20,则x2+y0_15下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是 16若一次函数y=2(x+1)+4的值是正数,则x
5、的取值范围是_三、解答题(共8题,共72分)17(8分)已知关于x的一元二次方程x2+2(m1)x+m230有两个不相等的实数根(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值18(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10,待加热到100,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程设某天水温和室温为20,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0x8和8xa时,y和
6、x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40的开水,问他需要在什么时间段内接水19(8分)计算:(1)20(8分)已知关于x的方程x2(m2)x(2m1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。21(8分)如图,在ABC中,ABAC,AE是BAC的平分线,ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F(1)求证:AE为O的切线;(2)当BC=4,AC=6时,求O的半径;
7、(3)在(2)的条件下,求线段BG的长22(10分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号)23(12分)(2013年四川绵阳12分)如图,AB是O的直径,C是半圆O上的一点,AC平分DAB,ADCD,垂足为D,AD交O于E,连接CE(1)判断CD与O的位置关系,并证明你的结论;(2)若E是的中点,O的半径为1,求图中阴影部分的面积24如图,AB是O的直径,BAC=90,四边形EBOC是平行四边形,EB交O于点D,连接CD并延长交AB的延长
8、线于点F(1)求证:CF是O的切线;(2)若F=30,EB=6,求图中阴影部分的面积(结果保留根号和)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可【详解】分三种情况:当P在AB边上时,如图1,设菱形的高为h,y=APh,AP随x的增大而增大,h不变,y随x的增大而增大,故选项C不正确;当P在边BC上时,如图2,y=ADh,AD和h都不变,在这个过程中,y不变,故选项A不正确;当P在边CD上时,如图3,y=PDh,PD随x的增大
9、而减小,h不变,y随x的增大而减小,P点从点A出发沿ABCD路径匀速运动到点D,P在三条线段上运动的时间相同,故选项D不正确,故选B【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出PAD的面积的表达式是解题的关键2、B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、只有选项B的各边为1、与它的各边对应成比例故选B【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.3、C【解析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少
10、用了40秒列出方程即可【详解】小进跑800米用的时间为秒,小俊跑800米用的时间为秒,小进比小俊少用了40秒,方程是,故选C【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键4、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2时,(7+4)x2+(2+)x+ (7+4)(2)2+(2+)(2)+ (7+4)(7-4)+1+ 49-48+1+2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算5、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.
11、5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.6、A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A考点:由三视图判定几何体.7、C【解析】利用合并同类项法则直
12、接合并得出即可【详解】解: 故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键8、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1
13、b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(41+a1,b1),1010=4501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐标,得到规律是解题关键9、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键10、C【解析】选项A, 3a2a2 = 2 a2;选项B, a2a3=
14、 a5;选项C, (a2)3 = a6;选项D,a2a2 = 1.正确的只有选项C,故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:,经检验,是原方程的根12、160【解析】试题分析:先求出COA和BOD的度数,代入BOC=COA+AOD+BOD求出即可解:AOD=20,COD=AOB=90,COA=BOD=9020=70,BOC=COA+AOD+BOD=70+20+70=160,故答案为160考点:余角和补角13、10【解析】根
15、据翻折的特点得到,.设,则.在中,即,解出x,再根据三角形的面积进行求解.【详解】翻折,又,.设,则.在中,即,解得,.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.14、1【解析】直接利用偶次方的性质以及二次根式的性质分别化简得出答案【详解】解:+(y1018)10,x10,y10180,解得:x1,y1018,则x1+y011+101801+11故答案为:1【点睛】此题主要考查了非负数的性质,正确得出x,y的值是解题关键15、n1n1【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4
16、+1+1个,第三个图有:9+3+1个,第n个为n1+n+1.考点:规律型:图形的变化类16、x1【解析】根据一次函数的性质得出不等式解答即可【详解】因为一次函数y=2(x+1)+4的值是正数,可得:2(x+1)+40,解得:x1,故答案为x1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.三、解答题(共8题,共72分)17、(1)m2;(2)m=1【解析】(1)利用方程有两个不相等的实数根,得=2(m-1)2-4(m2-3)=-8m+23,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件
17、的m的值【详解】(1)=2(m1)24(m23)=8m+2方程有两个不相等的实数根,3即8m+23 解得 m2;(2)m2,且 m 为非负整数,m=3 或 m=1,当 m=3 时,原方程为 x2-2x-3=3,解得 x1=3,x2=1(不符合题意舍去), 当 m=1 时,原方程为 x22=3,解得 x1=,x2= , 综上所述,m=1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a3)的根与=b2-4ac有如下关系:当3时,方程有两个不相等的实数根;当=3时,方程有两个相等的实数根;当3时,方程无实数根18、(1)当0x8时,y=10x+20;当8xa时,y=;(2)40;(
18、3)要在7:508:10时间段内接水【解析】(1)当0x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,即可求得k1、b的值,从而得一次函数的解析式;当8xa时,设y,将(8,100)的坐标代入y,求得k2的值,即可得反比例函数的解析式;(2)把y20代入反比例函数的解析式,即可求得a值;(3)把y40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围【详解】解: (1)当0x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,可求得k110,b20当0x8时,y1
19、0x20.当8xa时,设y,将(8,100)的坐标代入y,得k2800当8xa时,y.综上,当0x8时,y10x20;当8xa时,y(2)将y20代入y,解得x40,即a40.(3)当y40时,x20要想喝到不低于40 的开水,x需满足8x20,即李老师要在7:38到7:50之间接水【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际19、 【解析】根据分式的混合运算法则把原式进行化简即可.【详解】原式=()=【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答
20、此题的关键.20、(1)见详解;(2)4或4.【解析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是1,121(m2)(2
21、m1)=0,解得,m=2,则方程的另一根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.21、(1)证明见解析;(2);(3)1. 【解析】(1)连接OM,如图1,先证明OMBC,再根据等腰三角形的性质判断AEBC,则OMAE,然后根据切线的判定定理得到AE为O的切线;(2)设O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明AOMABE,则利用相似比得到,然后解关于r的方程即可;(3)作OHBE
22、于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1【详解】解:(1)证明:连接OM,如图1,BM是ABC的平分线,OBM=CBM,OB=OM,OBM=OMB,CBM=OMB,OMBC,AB=AC,AE是BAC的平分线,AEBC,OMAE,AE为O的切线;(2)解:设O的半径为r,AB=AC=6,AE是BAC的平分线,BE=CE=BC=2,OMBE,AOMABE,即,解得r=,即设O的半径为;(3)解:作OHBE于H,如图,OMEM,MEBE,四边形OHEM为矩形,HE=OM=,BH=BEHE=2=,OHBG,BH=HG=,
23、BG=2BH=122、【解析】过点C作CDAB,由CBD45知BDCDx,由ACD30知ADx,根据AD+BDAB列方程求解可得【详解】解:过点C作CDAB于点D, 设CDx,CBD45,BDCDx,在RtACD中,ADx,由AD+BDAB可得x+x10,解得:x55,答:飞机飞行的高度为(55)km23、解:(1)CD与O相切理由如下:AC为DAB的平分线,DAC=BACOA=OC,OAC=OCA,DAC=OCAOCADADCD,OCCDOC是O的半径,CD与O相切(2)如图,连接EB,由AB为直径,得到AEB=90,EBCD,F为EB的中点OF为ABE的中位线OF=AE=,即CF=DE=在
24、RtOBF中,根据勾股定理得:EF=FB=DC=E是的中点,=,AE=ECS弓形AE=S弓形ECS阴影=SDEC=【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中
25、位线定理,勾股定理,扇形面积的计算,转换思想的应用24、(1)证明见解析;(2)93【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出AOC=OBE,COD=ODB,结合OB=OD得出DOC=AOC,从而证明出COD和COA全等,从而的得出答案;(2)、首先根据题意得出OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据RtAOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD四边形OBEC是平行四边形,OCBE,AOC=OBE,COD=ODB,OB=OD,OBD=ODB,DOC=AOC,在COD和COA中,CODCOA,CDO=CAO=90,CFOD, CF是O的切线(2)F=30,ODF=90,DOF=AOC=COD=60,OD=OB,OBD是等边三角形,4=60,4=F+1,1=2=30,ECOB,E=1804=120,3=180E2=30,EC=ED=BO=DB,EB=6,OB=ODOA=3, 在RtAOC中,OAC=90,OA=3,AOC=60,AC=OAtan60=3, S阴=2SAOCS扇形OAD=233=93
限制150内