辽宁省盘锦市辽河油田第一高级中学2023届高三第二次模拟考试数学试卷含解析.doc
《辽宁省盘锦市辽河油田第一高级中学2023届高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省盘锦市辽河油田第一高级中学2023届高三第二次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D2已知集合,定义集合,则等于( )ABCD3已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是( )A3B
2、5C7D94已知集合,则( )ABCD5小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD6复数的虚部为( )ABC2D7执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD8已知,则( )ABCD9在长方体中,则直线与平面所成角的余弦值为( )ABCD10体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全
3、部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D611如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )ABCD12已知实数、满足约束条件,则的最大值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左、右焦点和点为某个等腰三角形的三个顶点,则双曲线C的离心率为_.14若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为_.15在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为
4、_16已知向量,若,则实数_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,为等腰直角三角形,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE. (1)证明:;(2)若,求二面角的余弦值.18(12分)已知是递增的等比数列,且、成等差数列.()求数列的通项公式;()设,求数列的前项和.19(12分)设的内角、的对边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.20(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的
5、普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.21(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长22(10分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【详解
6、】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题2、C【解析】根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.3、D【解析】根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得 ,利用周期性可得函数在区间上的零点个数【详解】是定义是上的奇函数,满足, ,可得,函数的周期为3,当时, ,令,则,解得或1,又函数是定义域为的奇函数,在
7、区间上,有由,取,得 ,得,又函数是周期为3的周期函数,方程=0在区间上的解有 共9个,故选D【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题4、C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.5、D【解析】这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.6、D【解析】根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本
8、题考查复数的除法运算和复数的概念.7、B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.8、C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数
9、的符号.9、C【解析】在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.10、B【解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”可知需要的次数为4次.故选:B.【点睛】本题考查的是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 盘锦市 辽河 油田 第一 高级中学 2023 届高三 第二次 模拟考试 数学试卷 解析
限制150内