《河北省辛集市达标名校2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省辛集市达标名校2023年中考试题猜想数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|c|,bc0,则原点的位置()A点A的左侧B点A点B之间C点B点C之间D点C的右侧2一元二次方程x2+2x15=0的两个
2、根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=53在中,则的值是( )ABCD4如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()ABCD5如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD6如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D47在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距
3、10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )A-4或-14B-4或14C4或-14D4或148如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为()A20 B16 C12 D89下列各式中,互为相反数的是( )A和B和C和D和10下列汽车标志中,不是轴对称图形的是( )ABCD11某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )Ax(x+1)=1035Bx(x-1)=1035Cx(x+1)=1035Dx(x-1)=103512如图,直
4、线AB与直线CD相交于点O,E是COB内一点,且OEAB,AOC=35,则EOD的度数是( )A155B145C135D125二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一组数据,2,3,1,6的中位数为1,则其方差为_14廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是_米精确到1米15因式分解:=_16如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_17若a22a4=0,则5+4a2a2=_18如图,动点P在平
5、面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2019次运动后,动点P的坐标是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知AB是圆O的直径,弦CDAB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F(1)求圆O的半径;(2)如果AE=6,求EF的长20(6分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与
6、抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.21(6分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1如图2,正方形ABCD顶点处各有一个圈跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;设游戏者
7、从圈A起跳(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?22(8分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积23(8分)先化简(x-),然后从-x0,c0,这与bc0不符,故不能选B;C选项中,若原点在B、C之间,则且bc0,与已知条件一致,故可以选C;D选项中,若原点在点
8、C右侧,则b0,c0,这与bc0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.2、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.3、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义
9、,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比4、B【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形【详解】综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个故选:B【点睛】此题考查由三视图判断几何体,解题关键在于识别图形5、A【解析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.6、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30,OAG
10、=AOG=30,GOE=90-AOG=90-30=60,OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.7、D【解析
11、】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得【详解】一条抛物线的函数表达式为y=x2+6x+m,这条抛物线的顶点为(-3,m-9),关于x轴对称的抛物线的顶点(-3,9-m),它们的顶点相距10个单位长度|m-9-(9-m)|=10,2m-18=10,当2m-18=10时,m=1,当2m-18=-10时,m=4,m的值是4或1故选D【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系8、B【解析】首先证明:OE=BC,由AE+
12、EO=4,推出AB+BC=8即可解决问题;【详解】四边形ABCD是平行四边形,OA=OC,AE=EB,OE=BC,AE+EO=4,2AE+2EO=8,AB+BC=8,平行四边形ABCD的周长=28=16,故选:B【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型9、A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案【详解】解:A. =9,=-9,故和互为相反数,故正确;B. =9,=9,故和不是互为相反数,故错误;C. =-8,=-8,故和不是互为相反数,故错误;D. =8,=8故和不是互为相反数
13、,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则10、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合11、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程全班有x名同学,每名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)=1故选B考点:由实际
14、问题抽象出一元二次方程12、D【解析】解: EOAB, 故选D.二、填空题:(本大题共6个小题,每小题4分,共24分)13、3【解析】试题分析:数据3,x,3,3,3,6的中位数为3,解得x=3,数据的平均数=(33+3+3+3+6)=3,方差=(33)3+(33)3+(33)3+(33)3+(33)3+(63)3=3故答案为3考点:3方差;3中位数14、 【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有,即,所以两盏警示灯之间的水平距离为:15、2(x+3)(x3)【解析】试题分析:先提公因式2后,再利用平方差公式分解即可
15、,即=2(x2-9)=2(x+3)(x-3).考点:因式分解.16、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又由双曲线在二、四象限k0,k=-417、-3【解析】试题解析: 即 原式 故答案为 18、(2019,2)【解析】分析点P的运动规律,找到循环次数即可【详解】分析图象可以发现,点P的运动每4次位置循环一次每循环一次向右移动四个单位2019=4504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环三、解答题:(本大题共9
16、个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) 圆的半径为4.5;(2) EF=【解析】(1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;(2)过O作OGAE于G,证明AGOAHF,列比例式可得AF的长,从而得EF的长【详解】(1)连接OD,直径AB弦CD,CD=4,DH=CH=CD=2,在RtODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AHOA)2+DH2,即r2=(5r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OGAE于G,AG=AE=6=3,A=A,AGO=AHF,AGOAHF,AF=,
17、EF=AFAE=6=【点睛】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.20、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即可;(2)作AMx轴,BNx轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可详解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.
18、在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键21、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样【解析】(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
19、【详解】(1)共有1种等可能的结果,落回到圈A的只有1种情况,落回到圈A的概率P1=;(2)列表得: 1 2 3 11(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),最后落回到圈A的概率P2=,她与嘉嘉落回到圈A的可能性一样【点睛】此题考查了列表法或树状图法求概率注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数22、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题
20、分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将ABC的面积转化为OBC的面积试题解析:()把代入反比例函数表达式,得,解得,反比例函数表达式为,把代入正比例函数,得,解得,正比例函数表达式为()直线由直线向上平移个单位所得,直线的表达式为,由,解得或,在第四象限,连接,23、当x=1时,原式=; 当x=1时,原式=【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算【详解】原式= = =-x,且x为整数,若使分式有
21、意义,x只能取-1和1当x=1时,原式=或:当x=-1时,原式=124、见详解【解析】根据角平分线的定义可得ABD=CBD,然后利用“边角边”证明ABD和CBD全等,根据全等三角形对应角相等可得ADB=CDB,然后根据角平分线上的点到角的两边的距离相等证明即可【详解】证明:BD为ABC的平分线,ABD=CBD,在ABD和CBD中, ABDCBD(SAS),ADB=CDB,点P在BD上,PMAD,PNCD,PM=PN【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到ADB=CDB是解题的关键25、(1)详见解析;(2)6【解析】(1)连接C
22、D,证明即可得到结论;(2)设圆O的半径为r,在RtBDO中,运用勾股定理即可求出结论.【详解】(1)证明:连接CD,.(2)设圆O的半径为,设.【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用综合性比较强,对于学生的能力要求比较高26、 (1)见解析;(2)见解析.【解析】(1)由ADBC得DAC=BCA, 又ACCE=ADBC,ACDCBE ,DCA=EBC,(2)由题中条件易证得ABFDAC,又AB=DC,【详解】证明:(1)ADBC,DAC=BCA,ACCE=ADBC,,ACDCBE ,DCA=EBC,(2)ADBC,AFB=EBC,DCA=EBC,AFB=DCA,ADBC,
23、AB=DC,BAD=ADC,ABFDAC,AB=DC,.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.27、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元
限制150内