重庆市江津区第六中学2022-2023学年高三第一次调研测试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《重庆市江津区第六中学2022-2023学年高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市江津区第六中学2022-2023学年高三第一次调研测试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,表示两个不同的平面,l为内的一条直线,则“是“l”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2如图所示的程序框图,若输入,则输出的结果是( )ABCD3如图,在平行四边形中,对角线与交于点,且,则( )ABCD4已知无穷等比数列的公比为2,且,则( )ABCD5已知双曲线的一条渐近线方程为,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则( )A9B5C2或9D1或56已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )ABC0D
3、7已知等差数列的前n项和为,则A3B4C5D68已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为()ABC4D29已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( )ABCD10随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A1月至8月空气合格天数超过天的月份有个B第二季度与第一季度相比,空气达标天数的比重下降了C8月是空气质量最好的一个月D6月份的空气质量最差.11设
4、,则的大小关系是( )ABCD12设是等差数列,且公差不为零,其前项和为则“,”是“为递增数列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若,则_.14已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为_.15已知数列的各项均为正数,满足,若是等比数列,数列的通项公式_16若关于的不等式在上恒成立,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2
5、)若,是等边三角形,求二面角的余弦值.18(12分)如图,在四棱锥中,底面是直角梯形且,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.19(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求的面积20(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.21(12分)等差数列的公差为2, 分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数
6、列满足,求数列的前2020项的和22(10分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断解:根据题意,由于,表示两个不同的平面,l为内的一条直线,由于“,则根据面面平行的性质定理可知,则必然中任何一条直线平行
7、于另一个平面,条件可以推出结论,反之不成立,“是“l”的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定2、B【解析】列举出循环的每一步,可得出输出结果.【详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.3、C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会
8、给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算4、A【解析】依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,解得,所以,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。5、B【解析】根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.6、C【解析】先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若
9、设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.7、C【解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C8、D【解析】设,根据可得,再根据又,由可得,化简可得,即可求出离心率【详解】解:设,即,又,由可得,即,故选:D【点睛】本题考查双曲线的方程和性质,考查了斜率的计算
10、,离心率的求法,属于基础题和易错题9、B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.10、D【解析】由图表可知月空气质量合格天气只有天,月份的空
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆市 江津 第六 中学 2022 2023 学年 第一次 调研 测试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内