《辽宁省辽阳市重点达标名校2023届中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省辽阳市重点达标名校2023届中考数学模拟精编试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b0;-1a-;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+
2、c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个2下列各数中,最小的数是( )A0BCD3如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A、B.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A B C D 4如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180得c2,交x轴于点A2;将c2绕点A2旋转180得c3,交x轴于点A3如此进行下去,若点P(103,m)在图象上,那么m的值是()A2B2C3D45如图,将ABC沿着DE剪成一
3、个小三角形ADE和一个四边形DECB,若DEBC,四边形DECB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD6若m,n是一元二次方程x22x1=0的两个不同实数根,则代数式m2m+n的值是()A1B3C3D17下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个8如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()ABCD9按一定规律排列的一列数依次为:,1,、,按此规律,这列数中的第100个数是()ABCD10如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(3,1)、C(0,1),若将
4、ABC绕点C沿顺时针方向旋转90后得到A1B1C,则点B对应点B1的坐标是()A(3,1)B(2,2)C(1,3)D(3,0)二、填空题(共7小题,每小题3分,满分21分)11和平中学自行车停车棚顶部的剖面如图所示,已知AB16m,半径OA10m,高度CD为_m122018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_. 13如图,ABCADE,BAC=DAE=90,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_14一个不透明的袋子中装有6个球,其中2个红球、4个黑球
5、,这些球除颜色外无其他差别现从袋子中随机摸出一个球,则它是黑球的概率是_15已知O1、O2的半径分别为2和5,圆心距为d,若O1与O2相交,那么d的取值范围是_16如图,在平面直角坐标系中,P的圆心在x轴上,且经过点A(m,3)和点B(1,n),点C是第一象限圆上的任意一点,且ACB=45,则P的圆心的坐标是_17如图,点A的坐标是(2,0),ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_三、解答题(共7小题,满分69分)18(10分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由
6、若AD=2,AC=,求O的半径19(5分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值20(8分)已知x11x11求代数式(x1)1+x(x4)+(x1)(x+1)的值21(10分)如图,点A、B、C、D在同一条直线上,CEDF,
7、EC=BD,AC=FD,求证:AE=FB22(10分)解方程(1)x11x10(1)(x+1)14(x1)123(12分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1
8、个女生的概率24(14分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0a5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?参考答案一、选
9、择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线
10、的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线
11、与x轴没有交点2、D【解析】根据实数大小比较法则判断即可【详解】01,故选D【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键3、D【解析】分析:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA=3,然后根据平移规律即可求解详解:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,曲线段AB扫过的面积为9(图中的阴影部分),矩形A
12、CD A的面积等于9,ACAA=3AA=9,AA=3,新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1故选D点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA的长度是解题关键4、C【解析】求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解【详解】令,则=0,解得,由图可知,抛物线在x轴下方,相当于抛物线向右平移4(261)=100个单位得到得到,再将绕点旋转18
13、0得,此时的解析式为y=(x100)(x1004)=(x100)(x104), 在第26段抛物线上,m=(103100)(103104)=3.故答案是:C.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.5、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6、B【解析】把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值【详解】解:若,是一元二次方程的两个不同实数根
14、,故选B【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式7、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案【详解】BDC=90,B+BCD=90,ACB=90,即BCD+ACD=90,ACD=B=,A、在RtBCD中
15、,sin=,故A正确,不符合题意;B、在RtABC中,sin=,故B正确,不符合题意;C、在RtACD中,sin=,故C正确,不符合题意;D、在RtACD中,cos=,故D错误,符合题意,故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边9、C【解析】根据按一定规律排列的一列数依次为:,1,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、,型;分子为型,可得第100个数为【详解】按一定规律排列的一列数依次为:,1,按此规律,奇数项为负,偶数项为正,分母为3、7、9、,型;分子为型,可得第n个数为,当时,这个数为,故
16、选:C【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.10、B【解析】作出点A、B绕点C按顺时针方向旋转90后得到的对应点,再顺次连接可得A1B1C,即可得到点B对应点B1的坐标【详解】解:如图所示,A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2)故选:B【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标二、填空题(共7小题,每小题3分,满分21分)11、1【解析】由CDAB,根据垂径定理得到ADDB8,再在RtOAD中,利用勾股定理计算出OD
17、,则通过CDOCOD求出CD【详解】解:CDAB,AB16,ADDB8,在RtOAD中,AB16m,半径OA10m,OD6,CDOCOD1061(m)故答案为1【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理12、【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:61,故答案为:61【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a
18、的值以及n的值13、1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=114、【解析】根据概率的概念直接求得.【详解】解:46=.故答案为:.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.15、3d7【解析】若两圆的半径分别为R和r,且Rr,圆心距为d:相交,则R-rdR+r,从而得到圆心距O1O2的取值范围【详解】O1和O2的半径分别为2和5,且两圆的位置关系为相交,圆心距O1O2的取值范围为5-2d2+5,即3d7.故答案为:3d7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.16、(2
19、,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:APB=90,再证明BPEPAF,根据PE=AF=3,列式可得结论【详解】连接PB、PA,过B作BEx轴于E,过A作AFx轴于F,A(m,3)和点B(1,n),OE=1,AF=3,ACB=45,APB=90,BPE+APF=90,BPE+EBP=90,APF=EBP,BEP=AFP=90,PA=PB,BPEPAF,PE=AF=3,设P(a,0),a+1=3,a=2,P(2,0),故答案为(2,0)【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键17、【解析】
20、已知ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于RtOBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.【详解】过点B作BC垂直OA于C,点A的坐标是(2,0),AO=2,ABO是等边三角形,OC=1,BC=,点B的坐标是把代入,得 故答案为【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;三、解答题(共7小题,满分69分)18、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=
21、OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90,AB=2半径为1.119、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg销售总利润为w元构建一次函数,利用一次函数的性质即可解决问题.试题解析
22、:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200a)kg销售总利润为w元由题意w=100a+150(200a)=50a+30000,500,w随x的增大而减小,当a取最小值,w有最大值,200a2a,a,当a=67时,w最小=5067+30000=26650(元),此时20067=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识
23、,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题20、2.【解析】将原式化简整理,整体代入即可解题.【详解】解:(x1)1+x(x4)+(x1)(x+1)x11x+1+x14x+x143x12x3,x11x11原式3x12x33(x11x1)312【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.21、见解析【解析】根据CEDF,可得ECA=FDB,再利用SAS证明ACEFDB,得出对应边相等即可【详解】解:CEDFECA=FDB,在ECA和FDB中 ECAFDB,AE=FB【点睛】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角
24、形全等是解决问题的关键22、(1)x1=1+,x1=1;(1)x1=3,x1=【解析】(1)配方法解;(1)因式分解法解.【详解】(1)x11x1=2,x11x+1=1+1,(x1)1=3,x1= ,x=1,x1=1,x1=1,(1)(x+1)1=4(x1)1(x+1)14(x1)1=2(x+1)11(x1)1=2(x+1)1(1x1)1=2(x+11x+1)(x+1+1x1)=2(x+3)(3x1)=2x1=3,x1=【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程23、(1)60,1(2)补图见解析;(3) 【解析】(1)根据了解很少的人数和所占的百分百
25、求出抽查的总人数,再用“基本了解”所占的百分比乘以360,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案【详解】(1)接受问卷调查的学生共有3050%60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为3601,故答案为60,1(2)了解的人数有:601530105(人),补图如下:(3)画树状图得:共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,恰好抽到1个男生和1个女生的概率为【点睛】此题考查了条形统计图、
26、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率所求情况数与总情况数之比24、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可 (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,
27、然后根据总利润w=总售价-总成本,求出最佳的进货方案【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.518=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0a5),由题意得,解得:600t800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0a3时,3-a0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3a5时,3-a0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解
限制150内