陕西省西安市碑林区教育局2022-2023学年高考压轴卷数学试卷含解析.doc
《陕西省西安市碑林区教育局2022-2023学年高考压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市碑林区教育局2022-2023学年高考压轴卷数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件2设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD3复数的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限4已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:在抛物线上满足条件的点仅有一个;若是抛物线准线上一动点,则的最小值为;无论过点的直线在什么位置,总有;若点在抛物线准线上的射影为,
3、则三点在同一条直线上.其中所有正确命题的个数为( )A1B2C3D45若均为任意实数,且,则 的最小值为( )ABCD6已知角的终边经过点,则的值是A1或B或C1或D或7木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( ) ABCD8下列几何体的三视图中,恰好有两个视图相同的几何体是( )A正方体B球体C圆锥D长宽高互不相等的长方体9设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD10九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重斤;在细的一端
4、截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( )A斤B 斤C斤D斤11已知函数的一条切线为,则的最小值为( )ABCD12函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:甲校学生成绩的优秀率大于乙校学生成绩的
5、优秀率;甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是_.14在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为_.15设等比数列的前项和为,若,则数列的公比是 16集合,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为_的值可以为2;的值可以为;的值可以为;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.18(12
6、分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,求的面积最小值.19(12分)已知,均为正项数列,其前项和分别为,且,当,时,.(1)求数列,的通项公式;(2)设,求数列的前项和.20(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.21(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,
7、的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.22(10分)如图,在四棱锥中,底面为正方形,、分别为、的中点(1)求证:平面;(2)求直线与平面所成角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.2、D【解析】令,可
8、得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此
9、方法求解.3、A【解析】试题分析:由题意可得:. 共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系4、C【解析】:由抛物线的定义可知,从而可求 的坐标;:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;:计算直线 的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于,设,由抛物线的方程得,则, 故,所以或,所以满足条件的点有二个,故不正确; 对于,不妨设,则关于准线的对称点为, 故,当且仅当三点
10、共线时等号成立,故正确; 对于,由题意知, ,且的斜率不为0,则设方程为:,设与抛物线的交点坐标为,联立直线与抛物线的方程为, ,整理得,则,所以, 则.故的倾斜角互补,所以,故正确.对于,由题意知 ,由知,则 ,由,知,即三点在同一条直线上,故正确.故选:C.【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.5、D【解析】该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 西安市 碑林 教育局 2022 2023 学年 高考 压轴 数学试卷 解析
限制150内