《甘肃省天水市重点名校2023年中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省天水市重点名校2023年中考数学全真模拟试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)2石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )A3.410-9mB0.3410
2、-9mC3.410-10mD3.410-11m3如图,在ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A5048B2548C5024D4把6800000,用科学记数法表示为()A6.8105B6.8106C6.8107D6.81085如图是用八块相同的小正方体搭建的几何体,它的左视图是( )ABCD6如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b的解集为Ax1B2x1C2x0或x1Dx27下列各式中,正确的是()A(xy)=xyB(2)1=CD8在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A
3、面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )ABCD9如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内)在E处测得建筑物顶端A的仰角为24,则建筑物AB的高度约为(参考数据:sin240.41,cos240.91,tan24=0.45)()A21.7米B22.4米C27.4米D28.8米10桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的
4、概率是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11方程的解是_12如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_13不等式组的非负整数解的个数是_14若a3有平方根,则实数a的取值范围是_15如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕O圆周旋转时,点F的运动轨迹是_图形16函数中,自变量的取值范围是_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶
5、点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:_;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为_18(8分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这
6、一路段平均每天还出现多少次非机动车逆向行驶情况?19(8分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.20(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N求证:ABMEFA;若AB=12,BM=5,求DE的长21(8分) “大美湿地,水韵盐城”某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数
7、据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数22(10分)如图,O是ABC的外接圆,BC为O的直径,点E为ABC的内心,连接AE并延长交O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE(1)求证:DB=DE;(2)求证:直线CF为O的切线;(3)若CF=4,求图中阴影部分的面积23(12分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值24作图题:在ABC内找一点P,使它到ABC
8、的两边的距离相等,并且到点A、C的距离也相等(写出作法,保留作图痕迹)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质2、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将111111111134用科学记数法表示,故选C考点:科学记数法3、B【解析】设以AB、AC为直径作半圆交BC于D
9、点,连AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B4、B【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:把6800000用科学记数法表示为6.81 故选B点睛:本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5
10、、B【解析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案【详解】左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,故选B【点睛】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图6、C【解析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,由图象可得
11、:-2x0或x1,故选C【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答7、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键8、A【解析】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A故选A9
12、、A【解析】作BMED交ED的延长线于M,CNDM于N首先解直角三角形RtCDN,求出CN,DN,再根据tan24=,构建方程即可解决问题.【详解】作BMED交ED的延长线于M,CNDM于N在RtCDN中,设CN=4k,DN=3k,CD=10,(3k)2+(4k)2=100,k=2,CN=8,DN=6,四边形BMNC是矩形,BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在RtAEM中,tan24=,0.45=,AB=21.7(米),故选A【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键10、B【解析】试题解析:由图可知
13、可以瞄准的点有2个B球一次反弹后击中A球的概率是.故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、x=1【解析】将方程两边平方后求解,注意检验【详解】将方程两边平方得x-3=4,移项得:x=1,代入原方程得=2,原方程成立,故方程2的解是x=1故本题答案为:x=1【点睛】在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验12、【解析】根据,只要求出、即可解决问题;【详解】四边形是平行四边形,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.13、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的
14、公共部分即可得到不等式组的解集【详解】解:解得:x,解得:x1,不等式组的解集为x1,其非负整数解为0、1、2、3、4共1个,故答案为1【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解14、a1【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得 解得: 故答案为【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15、圆【解析】根据题意作图,即可得到点F的运动轨迹.【详解】如图,根据题意作下图,可知F的运动轨迹为圆O
15、.【点睛】此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.16、【解析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x12,解得答案【详解】根据题意得x12,解得:x1;故答案为:x1【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2三、解答题(共8题,共72分)17、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)【解析】(1)ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻
16、折,即可得到DEF;按照旋转中心、旋转角度以及旋转方向,即可得到ABC绕点B逆时针旋转 的图形 ;依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可【详解】解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折(2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,即为所求;(3)点C所形成的路径的长为:故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)【点睛】本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移
17、的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小18、 (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解【详解】解:(1)被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,中位数为=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)第一次调查时,平均每天的非机动车逆向行驶的次数为=7(
18、次),第一次调查时,平均每天的非机动车逆向行驶的次数3次【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据19、15【解析】试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为,由题意得 ,解得 .经检验是原方程的解.答: 骑车学生的速度为15.20、(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,B=10,ADBC,得出AMB=EAF,再由B=AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABMEF
19、A得出比例式,求出AE,即可得出DE的长试题解析:(1)四边形ABCD是正方形,AB=AD,B=10,ADBC,AMB=EAF,又EFAM,AFE=10,B=AFE,ABMEFA;(2)B=10,AB=12,BM=5,AM=13,AD=12,F是AM的中点,AF=AM=6.5,ABMEFA,即,AE=16.1,DE=AE-AD=4.1考点:1.相似三角形的判定与性质;2.正方形的性质21、(1)40;(2)72;(3)1【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360乘以最想去D景点的人数所占的百分
20、比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为820%=40(人);(2)最想去D景点的人数为4081446=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为360=72;(3)800=1,所以估计“最想去景点B“的学生人数为1人22、(1)证明见解析;(2)证明见解析;(3)【解析】(1)欲证明DB=DE.,只要证明DBE=DEB;(2)欲证明CF是O的切线.,只要证明BCCF即可;(3)根据S阴影部分S扇形SOBD计算即可【详解】解:(1)E是ABC的
21、内心,BAE=CAE,EBA=EBC,BED=BAE+EBA,DBE=EBC+DBC,DBC=EAC,DBE=DEB,DB=DE(2)连接CDDA平分BAC,DAB=DAC,BD=CD,又BD=DF,CD=DB=DF,BCCF,CF是O的切线(3)连接OD O、D是BC、BF的中点,CF4, OD2. CF是O的切线,BOD为等腰直角三角形 S阴影部分S扇形SOBD 【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点23、,当x1时,原式1【解析】先化简分式,然后将x的值代入计算即可【详解】解:原式 . 且, x的整数有,取,当时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键24、见解析【解析】先作出ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点【详解】以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;连接AF,则直线AF即为ABC的角平分线;连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;连接FH交BF于点M,则M点即为所求【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键
限制150内