《福建省石狮市自然门校2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省石狮市自然门校2023年中考适应性考试数学试题含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1对于不为零的两个实数a,b,如果规定:ab,那么函数y2x的图象大致是()ABCD2两个一次函数,它们在同一直角坐标系中的图象大致是( )ABCD3某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.861044如图,在
2、ABC中,ACB=90, ABC=60, BD平分ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A3.5B3C4D4.55下列运算正确的是()Aa6a3=a2B3a22a=6a3C(3a)2=3a2D2x2x2=16下列图形中,是轴对称图形但不是中心对称图形的是( )ABCD7如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, SAEF=3,则SFCD为()A6B9C12D278九章算术是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少
3、4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )ABCD9如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),ABO30,将ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A(,)B(2,)C(,)D(,3)10已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),ADE=B=,DE交AB于点E,且tan=,有以下的
4、结论:ADEACD;当CD=9时,ACD与DBE全等;BDE为直角三角形时,BD为12或;0BE,其中正确的结论是_(填入正确结论的序号).12某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_13如图,已知ABCD,=_14矩形ABCD中,AB=8,AD=6,E为BC边上一点,将ABE沿着AE翻折,点B落在点F处,当EFC为直角三角形时BE=_15如图所示一棱长为3cm的正方体,把所有的面均分成33个小正方形其边长都为1cm,假设一只蚂
5、蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_秒钟16如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、解答题(共8题,共72分)17(8分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC=4,求菱形OCED的面积18(8分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经
6、过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= ,AB= 请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75,BO:OD=1:3,求DC的长19(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点下图中的P,Q两点即为同族点 (1)已知点A的坐标为(3,1),在点R(0,4),S(2,2),T(2,3)中,为点A的同族点的是 ;若点B在x轴上,且A,B两点为同族点,则
7、点B的坐标为 ;(2)直线l:y=x3,与x轴交于点C,与y轴交于点D,M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围20(8分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长21(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形
8、统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动22(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F问:图中APD与哪个三角形全等?并说明理由;求证:APEFPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由23(12分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整
9、的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?24如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60得到点P,我们称点P是点P的“旋转对应点”(1)若点P(4,2),则点P的“旋转对应点”P的坐标为 ;若点P的“旋转对应点”P的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P的坐标为 ;(2)如图2,点Q是线段AP上的一点(不与A、P重合),点Q的“旋转对应点”是点Q,连接
10、PP、QQ,求证:PPQQ;(3)点P与它的“旋转对应点”P的连线所在的直线经过点(,6),求直线PP与x轴的交点坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先根据规定得出函数y2x的解析式,再利用一次函数与反比例函数的图象性质即可求解【详解】由题意,可得当2x,即x2时,y2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2x,即x2时,y,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0x2,故B错误故选:C【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y2x的解析式是解题的关键
11、2、B【解析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合故选:B【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k0),k0时,一次函数图象经过第一三象限,k0时,一次函数图象经过第二四象限,b0时与y轴正半轴相交,b0时与y轴负半轴相交3、D【解析】用科学记数法
12、表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键4、B【解析】解:ACB90,ABC60,A10,BD平分ABC,ABDABC10,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B5、B【解析】A、根据同底数幂的除法法则计算;B、根据同底数幂的乘法法则计算;C、根据积的乘方法则进行计算;D、根据合并同类项法则进行计算.【详解】解:A、a6a3=a3,故原题错误;B、3a22a=6a3,故原题正确;
13、C、(3a)2=9a2,故原题错误;D、2x2x2=x2,故原题错误;故选B【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.6、A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.7、D【解析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出AEFCDF,由相似三角形的性质即可得出结论.【详解】解:四边形ABCD是平行四边形,
14、AE:EB=1:2,AE:CD=1:3,ABCD,EAF=DCF,DFC=AFE,AEFCDF,SAEF=3,()2,解得SFCD=1故选D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.8、C【解析】根据题意相等关系:8人数-3=物品价值,7人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9、A【解析】解:四边形AOBC是矩形,ABO=10,点B的坐标为(0,),AC=OB=,CAB=10,BC=ACtan10=1将ABC沿AB所在直线对折后,点C落
15、在点D处,BAD=10,AD=过点D作DMx轴于点M,CAB=BAD=10,DAM=10,DM=AD=,AM=cos10=,MO=1=,点D的坐标为(,)故选A10、B【解析】试题分析:观察图象可知,抛物线y=x2bxc与x轴的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两交点之间,即1x1故选B考点:二次函数的图象106144二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:ADE=B,DAE=BAD,ADEABD;故错误;作AGBC于G,ADE=B=,tan=,cos=,AB=AC=15,BG=1,BC=24,CD=9,BD=15,A
16、C=BDADE+BDE=C+DAC,ADE=C=,EDB=DAC,在ACD与DBE中,ACDBDE(ASA)故正确;当BED=90时,由可知:ADEABD,ADB=AED,BED=90,ADB=90,即ADBC,AB=AC,BD=CD,ADE=B=且tan=,AB=15,BD=1当BDE=90时,易证BDECAD,BDE=90,CAD=90,C=且cos=,AC=15,cosC=,CD=BC=24,BD=24-=即当DCE为直角三角形时,BD=1或故正确;易证得BDECAD,由可知BC=24,设CD=y,BE=x,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,0
17、x,0BE故错误故正确的结论为:考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质12、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中
18、,各数据偏离平均数越小,即波动越小,数据越稳定13、85【解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180,EFC=C,=180ABF+C=180120+25=85故答案为85.14、3或1【解析】分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【详解】当CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示连结AC,在RtABC中,AB=1,BC=8,AC= =10,B沿AE折叠,使点B落在点F处,AFE=B=90,当CEF为直角三角形时,只能得到EFC=90,点A、F、C共线,即B沿AE折叠,使点B落在对角线AC上的点F处,如图,
19、EB=EF,AB=AF=1,CF=101=4,设BE=x,则EF=x,CE=8x,在RtCEF中,EF2+CF2=CE2,x2+42=(8x)2,解得x=3,BE=3;当点F落在AD边上时,如图2所示此时ABEF为正方形,BE=AB=1综上所述,BE的长为3或1故答案为3或1【点睛】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论15、2.5秒【解析】把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得【详解】解:因为爬行路径不唯
20、一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线(1)展开前面右面由勾股定理得ABcm;(2)展开底面右面由勾股定理得AB5cm;所以最短路径长为5cm,用时最少:522.5秒【点睛】本题考查了勾股定理的拓展应用“化曲面为平面”是解决“怎样爬行最近”这类问题的关键16、2k。【解析】由图可知,AOB=45,直线OA的解析式为y=x,联立,消掉y得,由解得,.当时,抛物线与OA有一个交点,此交点的横坐标为1.点B的坐标为(2,0),OA=2,点A的坐标为().交点在线段AO上.当抛物线经过点B(2,0)时,解得k=2.要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围
21、是2k.【详解】请在此输入详解!三、解答题(共8题,共72分)17、(1)证明见解析;(1)【解析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵
22、活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半18、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,此题得解【详解】解:(1)BDAC,ADB=OAC=75BOD=COA,BODCOA,又AO=3,OD
23、=AO=,AD=AO+OD=4BAD=30,ADB=75,ABD=180-BAD-ADB=75=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75,BAC=30,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及
24、平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度19、(1)R,S;(,0)或(4,0);(2);m或m1【解析】(1)点A的坐标为(2,1),2+1=4,点R(0,4),S(2,2),T(2,2)中,0+4=4,2+2=4,2+2=5,点A的同族点的是R,S;故答案为R,S;点B在x轴上,点B的纵坐标为0,设B(x,0),则|x|=4,x=4,B(4,0)或(4,0);故答案为(4,0)或(4,0);(2)由题意,直线与x轴交于C(2,0),与y轴交于D(0,) 点M在线段CD上,设其坐标为(x,y),则有:,且点M到x轴的距离为,点
25、M到y轴的距离为,则点M的同族点N满足横纵坐标的绝对值之和为2即点N在右图中所示的正方形CDEF上点E的坐标为(,0),点N在直线上, 如图,设P(m,0)为圆心, 为半径的圆与直线y=x2相切,PC=2,OP=1,观察图形可知,当m1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m也满足条件,满足条件的m的范围:m或m120、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)A
26、B是O的直径,ACB=90,AB是O的直径,AC8,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,CE,OF= CE=,=,,;如图所示,当点D位于下半圆中点D2时,同理可求.CD1,CD27点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.21、(1)150,(2)36,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=15020%=30人,补全上面的条形统计图即可;
27、(3)360乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=2114%=150,(2)“足球“的人数=15020%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360=36;(4)120020%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键22、 (1)CPD理由参见解析;(2)证明参见解析;(3)PC2=PEPF理由参见解析.【解析】(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已
28、知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论【详解】解:(1)APDCPD理由:四边形ABCD是菱形,AD=CD,ADP=CDP又PD=PD,APDCPD(SAS)(2)APDCPD,DAP=DCP,CDAB,DCF=DAP=CFB,又FPA=FPA,APEFPA(两组角相等则两三角形相似)(3)猜想:PC2=PEPF理由:APEFPA,即PA2=PEPFAPDCPD,PA=PCPC2=PEPF【点睛】本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强23、(1)条形统计图如图所示,见解析;
29、(2)选择“爱国”主题所对应的圆心角是144;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案【详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)条形统计图如图所示:(2)选择“爱国”主题所对应的百分比为,选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如
30、图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题24、(1)(2,2+2),(10,165),(,ba);(2)见解析;(3)直线PP与x轴的交点坐标(,0)【解析】(1)当P(-4,2)时,OA=2,PA=4,由旋转知,PAH=30,进而PH=PA=2,AH=PH=2,即可得出结论;当P(-5,16)时,确定出PA=10,AH=5,由旋转知,PA=PA=10,OA=OH-AH=1
31、6-5,即可得出结论;当P(a,b)时,同的方法得,即可得出结论;(2)先判断出BQQ=60,进而得出PAP=PPA=60,即可得出PQQ=PAP=60,即可得出结论;(3)先确定出yPP=x+3,即可得出结论【详解】解:(1)如图1,当P(4,2)时,PAy轴,PAH=90,OA=2,PA=4,由旋转知,PA=4,PAP=60,PAH=30,在RtPAH中,PH=PA=2,AH=PH=2,OH=OA+AH=2+2,P(2,2+2),当P(5,16)时,在RtPAH中,PAH=30,PH=5,PA=10,AH=5,由旋转知,PA=PA=10,OA=OHAH=165,P(10,165),当P(a,b)时,同的方法得,P(,ba),故答案为:(2,2+2),(10,165),(,ba);(2)如图2,过点Q作QBy轴于B,BQQ=60,由题意知,PAP是等边三角形,PAP=PPA=60,QBy轴,PAy轴,QBPA,PQQ=PAP=60,PQQ=60=PPA,PPQQ;(3)设yPP=kx+b,由题意知,k=,直线经过点(,6),b=3,yPP=x+3,令y=0,x=,直线PP与x轴的交点坐标(,0)【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义
限制150内