《重庆市开县三校2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市开县三校2022-2023学年中考数学猜题卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众
2、数分别是( )A10,15B13,15C13,20D15,152这个数是( )A整数B分数C有理数D无理数3如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD4若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.5甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )ABCD6若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )ABCD7 “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为 ABCD
3、8估算的值是在()A2和3之间B3和4之间C4和5之间D5和6之间9若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx510关于x的方程3x+2a=x5的解是负数,则a的取值范围是()AaBaCaDa11正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )A8BCD12函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图:图象均是以P0为圆心,1个单位长度为半径的扇形,将图形分别沿东
4、北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形的圆心依次为P1P2P3,第二次移动后图形的圆心依次为P4P5P6,依此规律,P0P2018=_个单位长度14如图,直线l1l2l3,等边ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角1=25,则边AB与直线l1的夹角2=_15如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_16一个几何体的三视图如左图所示,则这个几何体是( )ABCD17如图,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D18如图1,AB
5、是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A点M B点N C点P D点Q三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)试在图中作出ABC以A为旋转中心,沿顺时针方向旋转90后的图形A
6、B1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.20(6分)如图,在梯形中,,点为边上一动点,作,垂足在边上,以点为圆心,为半径画圆,交射线于点.(1)当圆过点时,求圆的半径;(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.21(6分)如图,已知AOB=45,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作
7、图痕迹);(1)若M为AO的中点,求AM的长22(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE23(8分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形24(10分)如图,在ABC中,B90,AB4,BC1在BC上求作一点P,使PA+PBBC;(尺规作图,不写作法,保留作图痕迹)求BP的长25(10分)如图,在矩形纸片ABCD中,AB=6,BC=1把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E
8、、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长26(12分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数2
9、7(12分)如图,在平面直角坐标系xOy中,直线yx+b与双曲线y相交于A,B两点,已知A(2,5)求:b和k的值;OAB的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.2、D【解析】由于圆周率是一个无限不循环的小数,由此即可求解【详解】解:实数是一个无限不循环的小数所以是无理数故
10、选D【点睛】本题主要考查无理数的概念,是常见的一种无理数的形式,比较简单3、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图4、A【解析】根据一元二次方程的定义可得m10,再解即可【详解】由题意得:m10,解得:m1,故选A【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程5、C【解析】由实际问题抽象出方程(行程问题)【分析】甲车的速度为千米/小时,则乙甲车的速度为千米/
11、小时甲车行驶30千米的时间为,乙车行驶40千米的时间为,根据甲车行驶30千米与乙车行驶40千米所用时间相同得故选C6、D【解析】一次函数y=ax+b的图象经过第一、二、四象限,a0,a+b不一定大于0,故A错误,ab0,故B错误,ab0,故C错误,1时,是正数;当原数的绝对值1时,是负数详解:1800000这个数用科学记数法可以表示为 故选C 点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.8、C【解析】求出,推出45,即可得出答案【详解】,45,的值是在4和5之间故选:C【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出,题目比较好,难度不大9、C【解析
12、】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式10、D【解析】先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【详解】解方程3x+2a=x5得x=,因为方程的解为负数,所以9,舍去;k=1,则圆P的半径为1(2)如图2,由(1)知,P
13、H=PE=1k、CH=4k、PC=5k,BC=9,BE=BCPEPC=98k,ABECEH, ,即 ,解得:k= ,则PH= ,即圆P的半径为,圆B与圆P相交,且BE=98k= ,r;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQEG于G,HNBC于N,则EG=EF、1=1、EQ=QG、EF=EG=2EQ,GEP=21,PE=PH,1=2,4=1+2=21,GEP=4,EPQPHN,EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,sinC= 、cosC= ,NC= k、HN= k,PN=PCNC= k,EF=EG=2EQ=2PN= k,EH= ,故线段EH和EF的比值为定值
14、【点睛】此题考查全等三角形的性质,相似三角形的性质,解直角三角形,勾股定理,解题关键在于作辅助线.21、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.22、(1)见解析;(2
15、)见解析.【解析】(1)由DAC=DCA,对顶角AED=BEC,可证BCEADE(2)根据相似三角形判定得出ADEBDA,进而得出BCEBDA,利用相似三角形的性质解答即可【详解】证明:(1)AD=DC,DAC=DCA,DC2=DEDB,=,CDE=BDC,CDEBDC,DCE=DBC,DAE=EBC,AED=BEC,BCEADE,(2)DC2=DEDB,AD=DCAD2=DEDB,同法可得ADEBDA,DAE=ABD=EBC,BCEADE,ADE=BCE,BCEBDA,=,ABBC=BDBE【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解23、证明见
16、解析.【解析】利用三角形中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点又点E是边CD的中点,OE是BCD的中位线,OEBC,且OE=BC又CF=BC,OE=CF又点F在BC的延长线上,OECF,四边形OCFE是平行四边形【点睛】本题考查了平行四边形的性质和三角形中位线定理此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理熟记相关定理并能应用是解题的关键.24、 (1)见解析;(2)2.【解析】(1)作AC的垂直
17、平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求(2)设BPx,则CP1x,由(1)中作图知APCP1x,在RtABP中,由AB2+BP2AP2可得42+x2(1x)2,解得:x2,所以BP2【点睛】考核知识点:勾股定理和线段垂直平分线.25、(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:BDC由BDC翻折而成, C=BAG=90,CD=AB=CD,AGB=DGC,ABG=ADE。在ABGCDG中,BAG=C,AB= CD,ABG=AD C,ABGCDG(ASA)。(2)解:由(1)可知ABGCDG,GD=GB,AG+GB=AD。设AG=x,
18、则GB=1x,在RtABG中,AB2+AG2=BG2,即62+x2=(1x)2,解得x=。(3)解:AEF是DEF翻折而成,EF垂直平分AD。HD=AD=4。tanABG=tanADE=。EH=HD=4。EF垂直平分AD,ABAD,HF是ABD的中位线。HF=AB=6=3。EF=EH+HF=。(1)根据翻折变换的性质可知C=BAG=90,CD=AB=CD,AGB=DGC,故可得出结论。(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在RtABG中利用勾股定理即可求出AG的长,从而得出tanABG的值。(3)由AEF是DEF翻折而成可知EF垂直平分AD,故HD=AD
19、=4,再根据tanABG的值即可得出EH的长,同理可得HF是ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。26、(1)一共调查了300名学生(2)(3)体育部分所对应的圆心角的度数为48(4)1800名学生中估计最喜爱科普类书籍的学生人数为1【解析】(1)用文学的人数除以所占的百分比计算即可得解(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可(3)用体育所占的百分比乘以360,计算即可得解(4)用总人数乘以科普所占的百分比,计算即可得解【详解】解:(1)9030%=300(名),一共调查了300名学生(2)艺术的人数:30020%=60名,其它的人数:30010%=30名补全折线图如下:(3)体育部分所对应的圆心角的度数为:360=48(4)1800=1(名),1800名学生中估计最喜爱科普类书籍的学生人数为127、(1)b=3,k=10;(2)SAOB=【解析】(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;(2)过A作ADx轴于D,BEx轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0)求出OC=3,然后根据三角形的面积公式即可得到结论.解:()把代入把代入,(),时,又,
限制150内