阿坝市重点中学2023年中考数学模试卷含解析.doc
《阿坝市重点中学2023年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《阿坝市重点中学2023年中考数学模试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1若一个多边形的内角和为360,则这个多边形的边数是( )A3B4C5D62“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件3下列各式计算正确的是( )Aa+3a=3a2B(a2)3=a6Ca3a4=a7D(a+b)2=a22ab+b24已知函数的图象与x轴有交点则的取值范围是( )Ak4Bk4Ck4且k3Dk4且k35如图,由四个正方体组成的几何体的左视图是( )ABCD6如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC/BD/y轴,已知点A,B的横坐标分别为1,2,OAC
3、与ABD的面积之和为,则k的值为( )A4B3C2D7不解方程,判别方程2x23x3的根的情况()A有两个相等的实数根B有两个不相等的实数根C有一个实数根D无实数根8等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14 cm9的绝对值是()ABC2D210不等式组的解集在数轴上表示正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如果xy5,那么代数式的值是_12因式分解: 13如图,在ABC中,ABC=90,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若CAE=32,则ACF的
4、度数为_14如图,二次函数y=a(x2)2+k(a0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,2),点P为x轴上任意一点,连结PB、PC则PBC的面积为_15如图,已知CD是RtABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_cm.16请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_三、解答题(共8题,共72分)17(8分)如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度
5、吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.18(8分)抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(0,3)求抛物线的解析式;如图1,抛物线顶点为E,EFx轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC90,请指出实数m的变化范围,并说明理由如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2(k0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标19(8分
6、)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由20(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DEx轴于点E,DFAC交抛物
7、线对称轴于点F,求DE+DF的最大值;在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;点Q在抛物线对称轴上,其纵坐标为t,请直接写出ACQ为锐角三角形时t的取值范围21(8分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确”请回答:小楠的作图依据是_22(10分)计算:(4)()+21(1)0+23(12分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PHl于点H,则PF=PH.基于上述发现,对于平面直角坐标系xO
8、y中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,中,抛物线的关联点是_ ;(2)如图2,在矩形ABCD中,点,点,若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是_.24计算:(1)2018+()2|2 |+4sin60;参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)180=360, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解
9、题关键在于熟练掌握公式.2、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件3、C【解析】根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【详解】A. a+3a=4a,故不正确; B. (a2)3=(-a)6 ,故不正确; C. a3a4=a7 ,故正确; D. (a+b)2=a2+2ab+b2,故不正确;故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.4、B【解析】试题分析:若此函数与x轴有交点,则,0,即4-4(k-3)0,解得:k4,当k=3时,
10、此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.5、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.6、B【解析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC/BD/ y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出SOAC,SABD的面积,再根据OAC与ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,A(1,1),把x=2代入得:y=,B(2, ),AC/BD/ y轴,C(1,K),D(2,)AC=k-1,BD=-,SOAC=(k-1)1,SA
11、BD= (-)1,又OAC与ABD的面积之和为,(k-1)1 (-)1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.7、B【解析】一元二次方程的根的情况与根的判别式有关,方程有两个不相等的实数根,故选B8、B【解析】当腰长是2 cm时,因为2+22,符合三角形三边关系,此时周长是12 cm故选B9、B【解析】根据求绝对值的法则,直接计算即可解答【详解】,故选:B【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键10、C【解析】分别求出每一个不等式的解集,
12、根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可【详解】解:解不等式x+7x+3得:x2,解不等式3x57得:x4,不等式组的解集为:2x4,故选:C【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】先将分式化简,然后将x+y=1代入即可求出答案【详解】当xy1时,原式xy1,故答案为:1【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.12、
13、;【解析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解【详解】x2x12=(x4)(x+3)故答案为(x4)(x+3)13、58【解析】根据HL证明RtCBFRtABE,推出FCB=EAB,求出CAB=ACB=45,求出BCF=BAE=13,即可求出答案【详解】解:ABC=90,ABE=CBF=90,在RtCBF和RtABE中 RtCBFRtABE(HL),FCB=EAB,AB=BC,ABC=90,CAB=ACB=45BAE=CABCAE=4532=13,BCF=BAE=13,ACF=BCF+ACB=45+13=58故答案为58【点睛】本题考查了全等三角形的性质和判定,注意:全等三角
14、形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等14、4【解析】根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案【详解】二次函数的对称轴为直线x=2, 点A的坐标为(4,0),点C的坐标为(0,2),点B的坐标为(4,2), BC=4,则【点睛】本题主要考查的是二次函数的对称性,属于基础题型理解二次函数的轴对称性是解决这个问题的关键15、1【解析】利用ACDCBD,对应线段成比例就可以求出【详解】CDAB,ACB=90,ACDCBD,CD=1【点睛】本题考查了相似三角形的性质和判定,熟练掌握相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 阿坝 重点中学 2023 年中 数学 试卷 解析
限制150内