陕西省西安市第六十六中学2022-2023学年高三3月份模拟考试数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《陕西省西安市第六十六中学2022-2023学年高三3月份模拟考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市第六十六中学2022-2023学年高三3月份模拟考试数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。13本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )ABCD2在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD3如图,圆锥底面半径为,体积为,、是底面圆
2、的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )AB1CD4第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD5若的展开式中的常数项为-12,则实数的值为( )A-2B-3C2D36在中,已知,为线段上的一点,且,则的最小值为( )ABCD7如果,那么下列
3、不等式成立的是( )ABCD8已知函数的图象如图所示,则可以为( )ABCD9已知且,函数,若,则( )A2BCD10某几何体的三视图如图所示,则此几何体的体积为( )AB1CD11在中,角的对边分别为,若,则的形状为( )A直角三角形B等腰非等边三角形C等腰或直角三角形D钝角三角形12已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )A10B32C40D80二、填空题:本题共4小题,每小题5分,共20分。13动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_.14已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当轴,
4、点的横坐标是 15已知多项式满足,则_,_16若满足约束条件,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.18(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与
5、空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.19(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,切点分别为,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.20(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值21(12分)已知矩阵,若矩阵,求矩阵的逆矩阵22(10分)已知等差数列的前n项和为,且,求数列的通
6、项公式;求数列的前n项和参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】把5本书编号,然后用列举法列出所有基本事件计数后可求得概率【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,所求概率为故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率2、A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,
7、1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.3、D【解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.4、A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概
8、率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.5、C【解析】先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.6、A【解析】在中,设,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 西安市 第六 十六 中学 2022 2023 学年 月份 模拟考试 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内