辽宁省大连2022-2023学年高三第二次联考数学试卷含解析.doc





《辽宁省大连2022-2023学年高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省大连2022-2023学年高三第二次联考数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知的垂心为,且是的中点,则( )A14B12C10D82函数的图象如图所示,为了得到的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位3下图是我国第2430届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北京奥
3、运会相比,奥运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.54计算等于( )ABCD5的展开式中的一次项系数为( )ABCD6设过定点的直线与椭圆:交于不同的两点,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )ABCD7体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D68已知为非零向量,“”为“”的( )A充分不必要条件B充分必要条件C必要不充分条件D既不充分也不必要条件9设函数(,为自然对
4、数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD10在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD11已知四棱锥中,平面,底面是边长为2的正方形,为的中点,则异面直线与所成角的余弦值为( )ABCD12已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,直三棱柱中,P是的中点,则三棱
5、锥的体积为_.14的展开式中的常数项为_15在中,内角所对的边分别为,若 ,的面积为,则_ ,_16已知复数z112i,z2a+2i(其中i是虚数单位,aR),若z1z2是纯虚数,则a的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.18(12分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立19(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆
6、的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.20(12分)已知为坐标原点,点,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.21(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.22(10分)已知函数(mR)的导函数为(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的
7、底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而, 所以,因为是的中点,所以故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2、C【解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,.又时函数值最大,所以.又,从而,只需将的图象向左平移个单位即可得到的图象,故选C.【
8、点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求3、B【解析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.4、A【解析】利用诱导公式、特殊角的三角函数
9、值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.5、B【解析】根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论【详解】由题意展开式中的一次项系数为故选:B【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数同时本题考查了组合数公式6、D【解析】设直线:,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,由,得,解得或,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和
10、圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题7、B【解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.8、B【解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 大连 2022 2023 学年 第二次 联考 数学试卷 解析

限制150内