贵州省织金县市级名校2023年中考数学对点突破模拟试卷含解析.doc
《贵州省织金县市级名校2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《贵州省织金县市级名校2023年中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A平均数B众数C方差D标准差2在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A最高分90B众数是5C中位数是90D平均分为87.53化简的结果是( )ABCD2(x1)4不等式组的解集在数轴上表示为()ABCD5计算2+3的结果是()A1B1C5D66运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,
3、CD=6,EF=8.则图中阴影部分的面积是( )ABCD7如图,ABC是O的内接三角形,AC是O的直径,C=50,ABC的平分线BD交O于点D,则BAD的度数是( )A45B85C90D958半径为的正六边形的边心距和面积分别是()A,B,C,D,9如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm10如图,直角三角形ABC中,C=90,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )A2B+C+2D22二、填空题(共7小题,每小题3分
4、,满分21分)11已知二次函数,与的部分对应值如下表所示:-10123461-2-3-2m下面有四个论断:抛物线的顶点为;关于的方程的解为;其中,正确的有_12如图,直线ab,BAC的顶点A在直线a上,且BAC100若134,则2_13如图,RtABC中,BAC=90,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_14已知A(4,y1),B(1,y2)是反比例函数y=图象上的两个点,则y1与y2的大小关系为_15老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如2x22x+1x2+5x3:则所捂住的多项式是_16无锡大剧院演出歌剧时,信号
5、经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_秒17圆锥的底面半径为4cm,高为5cm,则它的表面积为_ cm1三、解答题(共7小题,满分69分)18(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家
6、中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率19(5分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)20(8分)阅读下列材料,解答下列问题:材料1把一个多项式化成几个整式的积
7、的形式,这种变形叫做因式分解,也叫分解因式如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程公式法(平方差公式、完全平方公式)是因式分解的一种基本方法如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax3a2x2+2ax+a2a23a2(x+a)2(2a)2(x+3a)(xa)材料2因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x
8、+yA,则原式A2+2A+1(A+1)2再将“A”还原,得:原式(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c26c+8分解因式;(2)结合材料1和材料2完成下面小题:分解因式:(ab)2+2(ab)+1;分解因式:(m+n)(m+n4)+321(10分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F(1)求证:OE=OF;(2)如图2,连接DE,BF,当DEAB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形22(10分)如图
9、,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60沿坡面AB向上走到B处测得广告牌顶部C的仰角为45,已知山坡AB的倾斜角BAH30,AB20米,AB30米(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度23(12分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C求证:CBP=ADB若OA=2,AB=1,求线段BP的长.24(14分)如图,BAC的平分线交ABC的外接圆于点D,交BC于点F,ABC的平分线交AD于点E(1)求证:DEDB:(2)若BAC90,BD4,求ABC外接圆的半径;(3)若BD
10、6,DF4,求AD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数 故选B点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用2、C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(802+85+905+952)(2+1+5+2)=88.5.3
11、、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键4、A【解析】根据不等式组的解集在数轴上表示的方法即可解答.【详解】x2,故以2为实心端点向右画,x1,故以1为空心端点向左画故选A【点睛】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:、向右画,、向左画, “”、“”要用实心圆点表示;“”要用空心圆点表示.5、A【解析】根据异号两数相加的法则进行计算即可【详解】解:因为-2,3异号,且|-2|3|,所以-2+3=1故选A【点睛】本题主要考查了异号两数相加,取绝对值较大的符
12、号,并用较大的绝对值减去较小的绝对值6、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故
13、选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键7、B【解析】解:AC是O的直径,ABC=90,C=50,BAC=40,ABC的平分线BD交O于点D,ABD=DBC=45,CAD=DBC=45,BAD=BAC+CAD=40+45=85,故选B【点睛】本题考查圆周角定理;圆心角、弧、弦的关系8、A【解析】首先根据题意画出图形,易得OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积【详解】解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OHBC于H,六边形ABCDEF是正六边形
14、,半径为,BOC=,OB=OC=R,OBC是等边三角形,BC=OB=OC=R,OHBC,在中,即,即边心距为;,S正六边形=,故选:A【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60,得到等边三角形是正确解答本题的关键9、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(c
15、m)故选C【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键10、D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -SABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CDC=90,AC=2,AB=4,BC=2阴影部分的面积= S半圆ACD +S半圆BCD -SABC= =.故选:D点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -SABC是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 贵州省 织金县 名校 2023 年中 数学 突破 模拟 试卷 解析
限制150内