浙江省台州仙居重点达标名校2023届中考二模数学试题含解析.doc
《浙江省台州仙居重点达标名校2023届中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省台州仙居重点达标名校2023届中考二模数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)13的绝对值是()A3B3C-D2下列运算结果正确的是()Ax2+2x23x4B(2x2)38x6Cx2(x3)x5D2x2x2x3叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C5105D501034
2、下列计算正确的是()Ax4x4=x16 B(a+b)2=a2+b2C=4 D(a6)2(a4)3=15已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A6B7C8D96函数的自变量x的取值范围是( )ABCD7如图,在ABC中,AED=B,DE=6,AB=10,AE=8,则BC的长度为( )ABC3D8计算:得()A-B-C-D9下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个10如图,ABC是O的内接三角形,ABAC,BCA65,作CDAB,并与O相交于点D,连接BD,则DBC的大小为( )A15B35C25D45二、填空题(本大题共
3、6个小题,每小题3分,共18分)11已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是_12如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tanOAB=,则AB的长是_13在计算器上,按照下面如图的程序进行操作:如表中的x与y分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_、_x321012y53113514分解因:=_15如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周所得圆柱的主视图(正视图)的周长是_16如图,在ABC中,ABAC,AHBC,垂足为点H,如果AHBC,那么sinBAC的值是
4、_三、解答题(共8题,共72分)17(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;(2)若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率18(8分)在等边三角形ABC中,点P在ABC内,点Q在ABC外,且ABP=ACQ,BP=CQ求证:ABPCAQ;请判断APQ是什么形状的三角形?试说明你的结论
5、19(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒
6、,那么这次消毒是否有效?为什么?20(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(3,0),B(1,0),与y轴相交于(0,),顶点为P(1)求抛物线解析式;(2)在抛物线是否存在点E,使ABP的面积等于ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积21(8分)校园手机现象已经受到社会的广泛关注某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查并将调查数据作出如下不完整的整理;看法频数频率赞成5
7、无所谓0.1反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数22(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为 ;(2)补全条形统计图(3)扇形统计图中,类所在扇形的圆心角的度数为 ;(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名. 23(12分)如图,在中,的垂直平
8、分线交于,交于,射线上,并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论24抛物线y=ax2+bx+3(a0)经过点A(1,0),B(,0),且与y轴相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCE与AOC相似时,求点D的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的
9、相反数.2、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2x2=2,故此选项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键3、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.4、D【解析】试题分析:x4x
10、4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.5、A【解析】试题分析:根据多边形的外角和是310,即可求得多边形的内角的度数为720,依据多边形的内角和公式列方程即可得(n2)180=720,解得:n=1故选A考点:多边形的内角和定理以及多边形的外角和定理6、D【解析】根据二次根式的意义,被开方数是非负数【详解】根据题意得,解得故选D【点睛】本题考查了函数自变量的取值范围的确定
11、和分式的意义函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数7、A【解析】AED=B,A=AADEACB,DE=6,AB=10,AE=8,解得BC.故选A.8、B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化【详解】 -故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.9、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形
12、;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、A【解析】根据等腰三角形的性质以及三角形内角和定理可得A =50,再根据平行线的性质可得ACD=A=50,由圆周角定理可行D=A=50,再根据三角形内角和定理即可求得DBC的度数.【详解】AB=AC,ABC=ACB=65,A=180-ABC-ACB=50,DC/AB,ACD=A=50,又D=A=50,DBC=180-D -BCD=180-50-(65+50)=15,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角
13、形内角和定理等,熟练掌握相关内容是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1或2【解析】先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种情况讨论求解【详解】根据题意得,x-5=0,y-7=0,解得x=5,y=7,5是腰长时,三角形的三边分别为5、5、7,三角形的周长为15是底边时,三角形的三边分别为5、7、7,能组成三角形,5+7+7=2;所以,三角形的周长为:1或2;故答案为1或2【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 台州 仙居 重点 达标 名校 2023 中考 数学试题 解析
限制150内