重庆市开县陈家中学2023年高考数学二模试卷含解析.doc
《重庆市开县陈家中学2023年高考数学二模试卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市开县陈家中学2023年高考数学二模试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若则( )Af(a)f(b) f(c)Bf(b) f(c) f(a)Cf(a) f(c) f(b)Df(c) f(b) f(a)2已知各项都为正的等差数列中,若,成等比数列,则(
2、)ABCD3已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()4设全集,集合,则集合( )ABCD5如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )ABCD6等比数列的前项和为,若,则( )ABCD7复数(为虚数单位),则的共轭复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限8是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面10设函数满足,则
3、的图像可能是ABCD11已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为( )A1.5B2.5C3.5D4.512九章算术中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A4B8CD二、填空题:本题共4小题,每小题5分,共20分。13双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_.14若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_.15已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且
4、,则双曲线的离心率为_16如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩形纸片中,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.(1)将l表示成的函数,并确定的取值范围;(2)求l的最小值及此时的值;(3)问当为何值时,的面积S取得最小值?并求出这个最小值.18(12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,
5、求直线l的斜率k.19(12分)设函数,()讨论的单调性;()时,若,求证:20(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,证明:.21(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.22(10分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关
6、系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,可得,故.故选:C【点睛】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.2、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.3、B【解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.4、C【解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.5、A【解析】作于,于,分析
7、可得,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.6、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:,从而公比;那么,故选D考点:等比数列7、C【解析】由复数除法求出,写出共轭复数,写出共轭复数
8、对应点坐标即得【详解】解析:,对应点为,在第三象限故选:C【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义掌握复数除法法则是解题关键8、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.9、B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件
9、,故选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误10、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B11、D【解析】利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.12、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆市 开县 家中 2023 年高 数学 试卷 解析
限制150内