重庆市沙坪坝区第一中学2023年高考数学一模试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《重庆市沙坪坝区第一中学2023年高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市沙坪坝区第一中学2023年高考数学一模试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知等边ABC内接于圆:x2+ y2=1,且P是圆上一点,则的最大值是( )AB1CD22由实数组成的等比数列an的前n项和为Sn,则“a10”是“S9S8”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD4一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) ABCD5当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )ABCD6下列与函数定义域和单调性都相
3、同的函数是( )ABCD7一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( ) ABCD8函数的图象大致为( )ABCD9已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p( )A1BC2D410已知函数在上可导且恒成立,则下列不等式中一定成立的是( )A、B、C、D、11已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A240,18B200,20C240,20D200,1
4、812若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是1二、填空题:本题共4小题,每小题5分,共20分。13设双曲线的一条渐近线方程为,则该双曲线的离心率为_.14在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.15已知函数,若,则的取值范围是_16已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在正四棱柱中,已知,.(1)求异面
5、直线与直线所成的角的大小;(2)求点到平面的距离.18(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.19(12分)第十三届全国人大常委会第十一次会议审议的固体废物污染环境防治法(修订草案)中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为(1)请将上面的列联表补充完整,并判断是否有的把握认为
6、居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望参考公式:,其中下面的临界值表仅供参考20(12分)已知函数,曲线在点处的切线方程为.()求,的值;()若,求证:对于任意,.21(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.22(10分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(
7、每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.求;规定,经过计算机计算可估计得,请根据中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图所示建立
8、直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.2、C【解析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.3、C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.4、D【解析
9、】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D5、A【解析】根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.6、C【解析】分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符
10、合.D选项,的定义域为,不符合.故选:C【点睛】本小题主要考查函数的定义域和单调性,属于基础题.7、C【解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状8、A【解析】用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为 ,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,
11、辨析函数的图像,排除法,属于中档题.9、C【解析】设直线l的方程为xy,与抛物线联立利用韦达定理可得p【详解】由已知得F(,0),设直线l的方程为xy,并与y22px联立得y2pyp20,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),y1+y2p,又线段AB的中点M的纵坐标为1,则y0(y1+y2),所以p=2,故选C【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题10、A【解析】设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆市 沙坪坝区 第一 中学 2023 年高 数学 试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内