辽宁省丹东四校协作体2023届高考数学倒计时模拟卷含解析.doc
《辽宁省丹东四校协作体2023届高考数学倒计时模拟卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省丹东四校协作体2023届高考数学倒计时模拟卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在内有且只有一个零点,则a的值为( )A3B3C2D22已知函数,若函数有三个零点,则实数的取值范围是( )ABCD3以下关于的命题,正确的是A函数在区间上单调递增B直线需是函数图象的一
2、条对称轴C点是函数图象的一个对称中心D将函数图象向左平移需个单位,可得到的图象4已知为非零向量,“”为“”的( )A充分不必要条件B充分必要条件C必要不充分条件D既不充分也不必要条件5已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD6已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD7若复数满足,则( )ABCD8双曲线的渐近线方程为( )ABCD9一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A16B12C8D610如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几
3、何体的表面积为( )ABCD11已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD12已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在直角三角形中,为直角,点在线段上,且,若,则的正切值为_.14若,则_,_.15中,角的对边分别为,且成等差数列,若,则的面积为_16已知变量 (m0),且,若恒成立,则m的最大值_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数
4、的取值范围;(2)若恒成立,求实数的取值范围.18(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 .(1)求点的坐标;(2)求的取值范围.19(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.20(12分)如图1,四边形为直角梯形,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.21(12分)设椭圆E:(
5、a,b0)过M(2,) ,N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由22(10分)如图,在四棱锥中,底面是直角梯形,是正三角形,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.
6、【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.2、B【解析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,所以是的一个零点,当时,若,则,即,所以,解得;当时,则,且若在时有一个零点,则,综上可得,故选:B.【点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数
7、的几何意义应用,属于中档题.3、D【解析】利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.4、B【解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条
8、件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.5、D【解析】设双曲线的左焦点为,连接,设,则,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,设,则,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.6、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.7、B【解析】由题意得,求解即可.【详解】因为
9、,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.8、C【解析】根据双曲线的标准方程,即可写出渐近线方程.【详解】 双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.9、B【解析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比
10、如:三棱锥,圆锥,圆柱等,属基础题.10、C【解析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.11、D【解析】设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 丹东 协作 2023 高考 数学 倒计时 模拟 解析
限制150内