《重庆市南川区部分校2023年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆市南川区部分校2023年中考数学适应性模拟试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A1.6104人B1.6105人C0.16105人D16103人2下列计算,结果等于a4的是()Aa+3a Ba5a C(a2)2 Da8a23在下列二次函数中,其图象的对称轴为的是ABCD4某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,24
3、5利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD6计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy7下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD8如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D99点P(4,3)关于原点对称的点所在的象限是()A第四象限B第三象限C第二象限D第一象限10如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3cm2C4cm2D5cm211如图,直线mn,1=70
4、,2=30,则A等于( ) A30B35C40D5012如图所示的几何体的俯视图是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算: 7(5)_14如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,按此规律进行下去,则点A3的横坐标为_;点A2018的横坐标为_15如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动
5、,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 16如图,在圆心角为90的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_cm117规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)
6、=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点18分解因式:a2b+4ab+4b=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一次函数ykx+b与反比例函数y(x0)的图象交于A(m,6),B(3,n)两点求一次函数关系式;根据图象直接写出kx+b0的x的取值范围;求AOB的面积20(6分)如图1,已知直线l:y=x+2与y轴交于点A,抛物线y=(x1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直
7、线l的点D处,点D的横坐标n(n1)(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a请写出a与n的函数关系式如图2,连接AC,CD,若ACD=90,求a的值21(6分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2)画出ABC关于点B成中心对称的图形A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出ABC放大后的图形A2B2C2,并直接写出C2的坐标22(8分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给
8、慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润23(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点(1)当直线m的表达式为yx时,在点,中,直线m的平行点是_;O的半径为,点Q在O上,若点Q为直线m的平行点,求点Q
9、的坐标(2)点A的坐标为(n,0),A半径等于1,若A上存在直线的平行点,直接写出n的取值范围24(10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=1(1)若CE=1,求BC的长;(1)求证:AM=DF+ME25(10分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米)26(12分)一名在校大学生利用“互联网+”自主创业,
10、销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?27(12分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边
11、小桶中小球个数是最初的两倍(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的_倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】用科学记数法表
12、示16000,应记作1.6104,故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、C【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可【详解】Aa+3a=4a,错误;Ba5和a不是同类项,不能合并,故此选项错误;C(a2)2=a4,正确;Da8a2=a6,错误故选C【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则3、A【解析】y=(x+2)2的对称轴为x=2,A正确;y
13、=2x22的对称轴为x=0,B错误;y=2x22的对称轴为x=0,C错误;y=2(x2)2的对称轴为x=2,D错误故选A14、A【解析】【分析】根据众数和中位数的定义进行求解即可得【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那
14、么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.6、C【解析】原式去括号合并同类项即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.7、D【解析】
15、根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、B【解析】连接DF,根据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径
16、,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键9、C【解析】由题意得点P的坐标为(4,3),根据象限内点的符号特点可得点P1的所在象限【详解】设P(4,3)关于原点的对称点是点P1,点P1的坐标为(4,3),点P1在第二象限故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(,+)的点在第二象限10、C【解析】延长AP交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面
17、积相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APBEPB(ASA),SAPBSEPB,APPE,APC和CPE等底同高,SAPCSPCE,SPBCSPBE+SPCESABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPBE+SPCESABC11、C【解析】试题分析:已知mn,根据平行线的性质可得3170.又因3是ABD的一个外角,可得32A.即A32703040.故答案选C.考点:平行线的性质.12、D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都
18、应表现在俯视图中【详解】从上往下看,该几何体的俯视图与选项D所示视图一致故选D【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】根据有理数的加法法则计算即可.【详解】.故答案为:2.【点睛】本题考查有理数的加法计算,熟练掌握加法法则是关键.14、 【解析】利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论【详解】当y=0时,有x-=0,解得:x=1,点B1的坐标为(1,0),A1OB1为等边三角
19、形,点A1的坐标为(,)当y=时有x-=,解得:x=,点B2的坐标为(,),A2A1B2为等边三角形,点A2的坐标为(,)同理,可求出点A3的坐标为(,),点A2018的坐标为(,)故答案为;【点睛】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键15、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD=CF,结论“CE=CF”正确;当CDAB时,如图
20、2所示,AB是半圆的直径,ACB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径OC的外端,且OCEF,EF与半圆相切,结论“EF与
21、半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AFB=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫过的图形就是图5中阴影部分,S阴影=2S
22、ABC=2ACBC=ACBC=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质16、+【解析】试题分析:如图,连接OC,EC,由题意得OCDOCE,OCDE,DE=,所以S四边形ODCE=1=,SOCD=,又SODE=11=,S扇形OBC=,所以阴影部分的面积为:S扇形OBC+SOCDSODE=+;故答案为考点:扇形面积的计算17、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=
23、(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行
24、问题;1.有理数大小比较;3.解一元一次不等式组18、b(a+2)2【解析】根据公式法和提公因式法综合运算即可【详解】a2b+4ab+4b=.故本题正确答案为.【点睛】本题主要考查因式分解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y2x1 ;(2)1x2 ;(2)AOB的面积为1 .【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可(2)由-2x+1-0,求出x的取值范围即可(2)首先分别求出C点、D
25、点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出AOB的面积是多少即可试题解析:(1)A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,6=,解得m=1,n=2,A(1,6),B(2,2),A(1,6),B(2,2)在一次函数y=kx+b的图象上,解得,y=-2x+1(2)由-2x+1-0,解得0x1或x2(2)当x=0时,y=-20+1=1,C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,D点的坐标是(4,0);SAOB=41-11-42=16-4-4=120、(1)B(1,1);(2)y=(xn)2+2n(3)a=;a=+1.【解析】1) 首先求得点A
26、的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。(2) 根据两种不同的表示形式得到m和h之间的函数关系即可。点C作y轴的垂线, 垂足为E, 过点D作DFCE于点F, 证得ACECDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。【详解】解:(1)当x=0时候,y=x+2=2,A(0,2),把A(0,2)代入y=(x1)2+m,得1+m=2m=1y=(x1)2+1,B(1,1)(2)由(1)知,该抛物线的解析式为:y=(x1)2+1,D(n,2n),则平移后抛物线的解析式为:y=(xn)2+2n故答案是:y=(xn)2+2n(3)C是
27、两个抛物线的交点,点C的纵坐标可以表示为:(a1)2+1或(an)2n+2由题意得(a1)2+1=(an)2n+2,整理得2an2a=n2nn1a=过点C作y轴的垂线,垂足为E,过点D作DFCE于点FACD=90,ACE=CDF又AEC=DFCACECDF=又C(a,a22a+2),D(2a,22a),AE=a22a,DF=m2,CE=CF=a=a22a=1解得:a=+1n1a=a=+1【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。21、(1)画图见解析;(2)画图见解析,C2的坐标为(6,4)【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;利
28、用关于原点位似图形的性质得出对应点位置进而得出答案试题解析:(1)A1BC1如图所示(2)A2B2C2如图所示,点C2的坐标为(6,4)22、(1)y是x的一次函数,y=30x+1(2)w=30x2780x31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同(2)销售利润=每个许愿瓶的利润销售量(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润【详解】解:(1)y是x的一次函数,设y=kx+b,图象过点(10
29、,300),(12,240),解得y=30x1当x=14时,y=180;当x=16时,y=120,点(14,180),(16,120)均在函数y=30x+1图象上y与x之间的函数关系式为y=30x+1(2)w=(x6)(30x1)=30x2780x31,w与x之间的函数关系式为w=30x2780x31(3)由题意得:6(30x+1)900,解得x3w=30x2780x31图象对称轴为:a=300,抛物线开口向下,当x3时,w随x增大而减小当x=3时,w最大=4以3元/个的价格销售这批许愿瓶可获得最大利润4元23、(1),;,;(2)【解析】(1)根据平行点的定义即可判断;分两种情形:如图1,当
30、点B在原点上方时,作OHAB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为,设直线BC/OE交x轴于C,作CDOE于D. 设A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;【详解】解:(1)因为P2、P3到直线yx的距离为1,所以根据平行点的定义可知,直线m的平行点是,故答案为,解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线设该直线与x轴交于点A,与y轴交于点B如图1,当点B在原点上方时,作OHAB于点H,可知OH1由直线m的表达式为yx,可知OABOBA45所以直线AB与O的
31、交点即为满足条件的点Q连接,作轴于点N,可知在中,可求所以在中,可求所以所以点的坐标为同理可求点的坐标为如图2,当点B在原点下方时,可求点的坐标为点的坐标为,综上所述,点Q的坐标为,(2)如图,直线OE的解析式为,设直线BCOE交x轴于C,作CDOE于D当CD1时,在RtCOD中,COD60,设A与直线BC相切于点F,在RtACE中,同法可得,根据对称性可知,当A在y轴左侧时,观察图象可知满足条件的N的值为:【点睛】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题24、 (1)1;
32、(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得ABCD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(1)先利用“边角边”证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明CDF和BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证试题解析:(1)四边形ABCD是菱形,ABCD,1=ACD,1=1
33、,ACD=1,MC=MD,MECD,CD=1CE,CE=1,CD=1,BC=CD=1;(1)AM=DF+ME证明:如图,F为边BC的中点, BF=CF=BC,CF=CE,在菱形ABCD中,AC平分BCD,ACB=ACD,在CEM和CFM中,CEMCFM(SAS),ME=MF,延长AB交DF的延长线于点G,ABCD,G=1,1=1,1=G,AM=MG,在CDF和BGF中,CDFBGF(AAS),GF=DF,由图形可知,GM=GF+MF,AM=DF+ME25、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米【解析】延长BC交OP于H.在RtAPD中解直角三角形求出AD10.PD24.由题意
34、BHPH.设BCx.则x+1024+DH.推出ACDHx14.在RtABC中.根据tan76,构建方程求出x即可.【详解】延长BC交OP于H斜坡AP的坡度为1:2.4,设AD5k,则PD12k,由勾股定理,得AP13k,13k26,解得k2,AD10,BCAC,ACPO,BHPO,四边形ADHC是矩形,CHAD10,ACDH,BPD45,PHBH,设BCx,则x+1024+DH,ACDHx14,在RtABC中,tan76,即4.1解得:x18.7,经检验x18.7是原方程的解答:古塔BC的高度约为18.7米【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,
35、解决本题的关键是作出辅助线,构造直角三角形26、(1) (2),144元【解析】(1)利用待定系数法求解可得关于的函数解析式;(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得【详解】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,当时,随的增大而增大,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质27、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答【详解】解:(1)依题意得:(3+2)(32)5故答案是:5;(2)依题意得:a+2+1a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a1+x2axa+1所以 a+3xa+3(a+1)2答:第三次变化后中间小桶中有2个小球【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答
限制150内