辽宁省锦州市联合校2022-2023学年高三第五次模拟考试数学试卷含解析.doc
《辽宁省锦州市联合校2022-2023学年高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省锦州市联合校2022-2023学年高三第五次模拟考试数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). ABCD2已知函数f(x)ebxexb+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(1)( )A
2、2B1C2D43若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD4给出以下四个命题:依次首尾相接的四条线段必共面;过不在同一条直线上的三点,有且只有一个平面;空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;垂直于同一直线的两条直线必平行.其中正确命题的个数是( )A0B1C2D35如图所示,三国时代数学家赵爽在周髀算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A134B67C182D1086不
3、等式组表示的平面区域为,则( )A,B,C,D,7在中,已知,为线段上的一点,且,则的最小值为( )ABCD8设,则ABCD9已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD10抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )ABCD11已知,则a,b,c的大小关系为( )ABCD12已知向量,则向量在向量上的投影是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知公差大于零的等差数列中,、依次成等比数列,则的值是_14 “六艺”源于中国周朝的贵族
4、教育体系,具体包括“礼、乐、射、御、书、数”某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为_15设函数 满足,且当时,又函数,则函数在上的零点个数为_.16设、满足约束条件,若的最小值是,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.18(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名
5、,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关
6、的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.19(12分)在四边形中,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.20(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.21(12分)已
7、知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.22(10分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.2、C【解析】根据对称性即可
8、求出答案【详解】解:点(5,f(5)与点(1,f(1)满足(51)22,故它们关于点(2,1)对称,所以f(5)+f(1)2,故选:C【点睛】本题主要考查函数的对称性的应用,属于中档题3、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题4、B【解析】用空间四边形对进行判断;根据公理2对进行判断;根据空间角的定义对进行判断;根据空间直线位置关系对进行判断.【详解】中,空间四边形的四条线段不共面,故错误.中,由公理2知道,过不在同一条直线上的三点,有且
9、只有一个平面,故正确.中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误.中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.5、B【解析】根据几何概型的概率公式求出对应面积之比即可得到结论.【详解】解:设大正方形的边长为1,则小直角三角形的边长为,则小正方形的边长为,小正方形的面积,则落在小正方形(阴影)内的米粒数大约为,故选:B.【点睛】本题主要考查几何概型的概率的应用
10、,求出对应的面积之比是解决本题的关键.6、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.7、A【解析】在中,设,结
11、合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,即,即,即,又,则,所以,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、,为线段上的一点,则存在实数使得,设,则,消去得,所以,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 锦州市 联合 2022 2023 学年 第五 模拟考试 数学试卷 解析
限制150内