辽宁省阜新市蒙古族自治县第二高级中学2022-2023学年高考数学五模试卷含解析.doc
《辽宁省阜新市蒙古族自治县第二高级中学2022-2023学年高考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省阜新市蒙古族自治县第二高级中学2022-2023学年高考数学五模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列为等比数列,若,且,则( )AB或CD2双曲线的一条渐近线方程为,那么它的离心率为( )ABCD3已知,则的值构成的集合是( )ABCD4已知集合,若,则( )A4B4C8D85某歌
2、手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是( )ABCD6已知复数(为虚数单位)在复平面内对应的点的坐标是( )ABCD7某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种ABCD8已知、分别是双曲
3、线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )ABCD9已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A内切B相交C外切D相离10已知双曲线()的渐近线方程为,则( )ABCD11将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是( )ABCD12复数(为虚数单位),则的共轭复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13若满足约束条件,则的最大值为_14如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角
4、,点的仰角以及;从点测得已知山高,则山高_15已知函数,则_;满足的的取值范围为_.16已知内角的对边分别为外接圆的面积为,则的面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.()若,求曲线的方程;()如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;()对于()中的曲线,若直线过点交曲线于点,求面积的最大值.18(12分)在中,角,所对的边分别为,且求的值;设的平分线与边交于点,已知,求的值.19(12分)已知函数(1)若关
5、于的不等式的整数解有且仅有一个值,当时,求不等式的解集;(2)已知,若,使得成立,求实数的取值范围20(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:21(12分)已知,函数的最小值为1(1)证明:(2)若恒成立,求实数的最大值22(10分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值该项指标值落在内的产品视为合格品,否则为不合格品乙生
6、产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,0.1500.1000.0500.0250.0100.0052.0
7、722.7063.8415.0246.6357.879参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.2、D【解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.3、C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【
8、详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.4、B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.5、C【解析】计算出、,进而可得出结论.【详解】由表格中的数据可知,由频率分布直方图可知,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.6、A【解析】直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在复平面内对应的点的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 阜新市 蒙古族 自治县 第二 高级中学 2022 2023 学年 高考 数学 试卷 解析
限制150内