浙江省温州新力量联盟2023届高三第二次诊断性检测数学试卷含解析.doc
《浙江省温州新力量联盟2023届高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州新力量联盟2023届高三第二次诊断性检测数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD2记
2、为等差数列的前项和.若,则( )A5B3C12D133已知函数,若,,则a,b,c的大小关系是( )ABCD4中,如果,则的形状是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形5已知函数,对任意的,当时,则下列判断正确的是( )AB函数在上递增C函数的一条对称轴是D函数的一个对称中心是6是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD7已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( )ABCD8已知函数,集合,则( )ABCD9设集合则( )ABCD10函数的图象为C,以下结论中正确的是( )图象C关于直线对称;图象C关于点对称;由y =2
3、sin2x的图象向右平移个单位长度可以得到图象C.ABCD11某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是ABCD12设,则“ ”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知点是抛物线的焦点,是该抛物线上的两点,若,则线段中点的纵坐标为_14定义,已知,若恰好有3个零点,则实数的取值范围是_.15记为数列的前项和,若,则_.16函数在区间内有且仅有两个零点,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)自湖北武汉爆发新
4、型冠状病毒肺炎疫情以来,在以总书记为核心的党中央的正确领导和指挥下,全国各地纷纷驰援,湖北的疫情形势很快得到了控制,但是国际疫情越来越严重,医用口罩等物资存在很大缺口.某口罩生产厂家复工复产后,抢时生产口罩,以驰援国际社会,已知该企业前10天生产的口罩量如下表所示:第天12345678910产量y(单位:万个)76.088.096.0104.0111.0117.0124.0130.0135.0140.0对上表的数据作初步处理,得到一些统计量的值:mn82.53998.9570.5(1)求表中m,n的值,并根据最小二乘法求出y关于x的线性回归方程(回归方程系数精确到0.1);(2)某同学认为更适
5、宜作为y关于x的回归方程模型,并以此模型求得回归方程为.经调查,该企业第11天的产量为145.3万个,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?并说明理由.附:,;18(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)19(12分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.20(12分)如图,在四棱锥中底面是菱形,是边长为的正三角形,为线段的中点求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,
6、请说明理由21(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?22(10分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非
7、负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.2、B【解析】由题得,解得,计算可得.【详解】,解得,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.3、D【解析】根据题意,求出函数的导数,由函数的
8、导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题4、B【解析】化简得lgcosAlglg2,即,结合, 可求,得代入sinCsinB,从而可求C,B,进而可判断.【详解】由,可得lgcosAlg2,sinCsinB,tanC,C,B.故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题5、D【解析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函
9、数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,函数, 对于A,故A错误;对于B,由,解得,故B错误;对于C,当时,故C错误; 对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.6、D【解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 温州 新力 联盟 2023 届高三 第二次 诊断 检测 数学试卷 解析
限制150内