浙江省杭州市上城区杭州中学2022-2023学年中考数学最后一模试卷含解析.doc
《浙江省杭州市上城区杭州中学2022-2023学年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市上城区杭州中学2022-2023学年中考数学最后一模试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则A明明的速度是80米分B第
2、二次相遇时距离B地800米C出发25分时两人第一次相遇D出发35分时两人相距2000米2已知二次函数yx24x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A1B2C3D43如图,一把带有60角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45角,则三角尺斜边的长度为()A12cmB12cmC24cmD24cm4下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD5叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C
3、5105D501036如图,四边形ABCD内接于O,AB为O的直径,点C为弧BD的中点,若DAB=50,则ABC的大小是()A55B60C65D707已知,且,则的值为( )A2或12B2或C或12D或8方程x23x+20的解是()Ax11,x22Bx11,x22Cx11,x22Dx11,x229在平面直角坐标系xOy中,将一块含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为()A(,0)B(2,0)C(,0)D(3,0)1
4、0下列各运算中,计算正确的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,DM垂直平分AC,交BC于点D,连接AD,若C=28,AB=BD,则B的度数为_度12若m+=3,则m2+=_13如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是_14如图,要使ABCACD,需补充的条件是_(只要写出一种)15与直线平行的直线可以是_(写出一个即可)16对于一元二次方程,根的判别式中的表示的数是_17欣欣超市为促销,决定对A,B两种商品统一进行打8折销售,打折前,买6件A商品和3件B商品需要54元,买3件A商品和4
5、件B商品需要32元,打折后,小敏买50件A商品和40件B商品仅需_元三、解答题(共7小题,满分69分)18(10分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD的值19(5分)如图,二次函数的图像与轴交于、两点,与轴交于点,点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点求、的值;如图,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点试问:抛物线上是否存在点,使
6、得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由20(8分)当=,b=2时,求代数式的值21(10分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m0)的图象交于点A(3,1),且过点B(0,2)(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且ABP的面积是3,求点P的坐标22(10分)一次函数的图象经过点和点,求一次函数的解析式23(12分)已知:如图所示,抛物线y=x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件SPAB=1的点P有几个?并求出
7、所有点P的坐标24(14分)如图,在ABC中,ABAC,若将ABC绕点C顺时针旋转180得到EFC,连接AF、BE(1)求证:四边形ABEF是平行四边形;(2)当ABC为多少度时,四边形ABEF为矩形?请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地
8、间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误【详解】解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,出发20分时两人第一次相遇,C选项错误;亮亮的速度为米分,两人的速度和为米分,明明的速度为米分,A选项错误;第二次相遇时距离B地距离为米,B选项正确;出发35分钟时两人间的距离为米,D选项错误故选:B【点睛】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键2、B【解析】
9、先将点A(1,0)代入yx24x+m,求出m的值,将点A(1,0)代入yx24x+m,得到x1+x24,x1x23,即可解答【详解】将点A(1,0)代入yx24x+m,得到m3,所以yx24x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)x24x+30有两个不等的实数根,x1+x24,x1x23,AB|x1x2| 2;故选B【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.3、D【解析】过A作ADBF于D,根据45角的三角函数值可求出AB的长度,根据含30角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作ADBF于D,ABD=45,AD=12,=12,又R
10、tABC中,C=30,AC=2AB=24,故选:D【点睛】本题考查解直角三角形,在直角三角形中,30角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.4、D【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一
11、般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.6、C【解析】连接OC,因为点C为弧BD的中点,所以BOC=DAB=50,因为OC=OB,所以ABC=OCB=65,故选C7、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.8、A【解析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解【详解】解:原方程可化为:(x1)(x1)0,x11,x11故选:A【点睛】此题
12、考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解9、C【解析】过点B作BDx轴于点D,易证ACOBCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点【详解】解:过点B作BDx轴于点D,ACO+BCD90,OAC+ACO90,OACBCD,在ACO与BCD中, ACOBCD(AAS)OCBD,OACD,A(0,2),C(1,0)OD3,BD1,B(3,1),设反比例函数的解析式为y,将B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 杭州市 城区 杭州 中学 2022 2023 学年 中考 数学 最后 试卷 解析
限制150内