《浙江省温州市2022-2023学年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市2022-2023学年中考数学模拟精编试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,ABC中,ACB=90,A=30,AB=1点P是斜边AB上一点过点P作PQAB,垂足为P,交边AC(或边CB)于点Q,设AP=x,APQ的面积为y,则y与x之间的函数图象大致为( )A BC D2当ab0时,yax2与yax+b的
2、图象大致是()ABCD3某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是( )A20,19B19,19C19,20.5D19,204老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A5B9C15D225根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次3.82亿用科学记数法可以表示为( )A3.82107B3.82108C3.82109D0.38210106下列四个图案中,不是轴对称
3、图案的是()ABCD7将5570000用科学记数法表示正确的是( )A5.57105 B5.57106 C5.57107 D5.571088如图,等腰ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数2,2,则AC的长度为()A2B4C2D49如图,在中,点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结给出以下四个结论:;点是的中点;,其中正确的个数是( )A4B3C2D110如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是
4、()A0个B1个或2个C0个、1个或2个D只有1个二、填空题(本大题共6个小题,每小题3分,共18分)11如图,BC6,点A为平面上一动点,且BAC60,点O为ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形ABD与ACE,连接BE、CD交于点P,则OP的最小值是_12直线y=2x1经过点(0,a),则a=_13如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 14一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0180)被称为一次操作若五
5、次操作后,发现赛车回到出发点,则角为15已知圆锥的底面半径为40cm, 母线长为90cm, 则它的侧面展开图的圆心角为_16如图,在ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若A=32,则CDB的大小为_度三、解答题(共8题,共72分)17(8分)计算.18(8分)已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D(I)如图,若BC为O的直径,求BD、CD的长;(II)如图,若CAB=60,求BD、BC的长19(8分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践
6、活动的天数,并用得到的数据绘制了统计图和图,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为 ,图中的m的值为 ;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数20(8分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,且,求m的值21(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍
7、,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0a200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案22(10分)作图题:在ABC内找一点P,使它到ABC的两边的距离相等,并且到点A、C的距离也相等(写出作法,保留作图痕迹)23(12分)(1)计算:|3|+(+)0()22cos60;(2)先化简,再求值:()+,其中a=2+24某中学响应“阳光体育”活动的号召,
8、准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:当点Q在AC上时,A=30,AP=x,PQ=xtan30=,y=APPQ=x=x2;当点Q在BC上时,如下图所示:AP=x,AB=1,A=30,BP=1x,B=60,PQ=BPtan
9、60=(1x), =APPQ= = ,该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下故选D点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况2、D【解析】ab0,a、b同号当a0,b0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a0,b0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求故选B3、D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1故选D【点睛】本题考查了众数
10、:在一组数据中出现次数最多的数叫这组数据的众数也考查了中位数的定义4、B【解析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数【详解】课外书总人数:625%24(人),看5册的人数:245649(人),故选B【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键5、B【解析】根据题目中的数据可以用科学记数法表示出来,本题
11、得以解决【详解】解:3.82亿=3.82108,故选B【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法6、B【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.7、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点
12、,由于5570000有7位,所以可以确定n=71=1【详解】5570000=5.57101所以B正确8、C【解析】根据等腰三角形的性质和勾股定理解答即可【详解】解:点A,D分别对应数轴上的实数2,2,AD4,等腰ABC的底边BC与底边上的高AD相等,BC4,CD2,在RtACD中,AC,故选:C【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理9、C【解析】用特殊值法,设出等腰直角三角形直角边的长,证明CDBBDE,求出相关线段的长;易证GABDBC,求出相关线段的长;再证AGBC,求出相关线段的长,最后求出ABC和BDF的面积,即可作出选择【详解】解:由题意知,AB
13、C是等腰直角三角形,设ABBC2,则AC2,点D是AB的中点,ADBD1,在RtDBC中,DC,(勾股定理)BGCD,DEBABC90,又CDBBDE,CDBBDE,DBEDCB, ,即DE ,BE,在GAB和DBC中,GABDBC(ASA)AGDB1,BGCD,GAB+ABC180,AGBC,AGFCBF,且有ABBC,故正确,GB,AC2,AF,故正确,GF,FEBGGFBE,故错误,SABCABAC2,SBDFBFDE,故正确故选B【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键10、C【解析】根据题
14、意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】试题分析:如图,BAD=CAE=90,DAC=BAE,在DAC和BAE中,A
15、D=AB,DAC=BAE,AC=AE,DACBAE(SAS),ADC=ABE,PDB+PBD=90,DPB=90,点P在以BC为直径的圆上,外心为O,BAC=60,BOC=120,又BC=6,OH=,所以OP的最小值是故答案为考点:1三角形的外接圆与外心;2全等三角形的判定与性质12、1【解析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可【详解】直线y=2x+1经过点(0,a),a=20+1,a=1故答案为113、【解析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,
16、套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】抛物线的对称轴为x=-抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=4,S菱形ABCD=ADOB=14=3故答案为3【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键14、7 2或144【解析】五次操作后,发现赛车回到出发点,正好走了一个正五边形,因为原地逆时针方
17、向旋转角a(0180),那么朝左和朝右就是两个不同的结论所以角=(5-2)1805=108,则180-108=72或者角=(5-2)1805=108,180-722=14415、【解析】圆锥的底面半径为40cm,则底面圆的周长是80cm,圆锥的底面周长等于侧面展开图的扇形弧长,即侧面展开图的扇形弧长是80cm,母线长为90cm即侧面展开图的扇形的半径长是90cm根据弧长公式即可计算【详解】根据弧长的公式l=得到:80=,解得n=160度侧面展开图的圆心角为160度故答案为16016、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,根据等腰三角形的性质以及
18、三角形外角的性质在BCD中可求得CDB=CBD=ACB=1【详解】AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=1,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用三、解答题(共8题,共72分)17、【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算解题过程中注意运算顺序解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.18、(1)BD=CD=5;(2)BD=5,BC=5【解析】(1)利用圆周角定理可以判定DCB是等腰直角三角形,
19、利用勾股定理即可解决问题;(2)如图,连接OB,OD由圆周角定理、角平分线的性质以及等边三角形的判定推知OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)BC是O的直径,CAB=BDC=90AD平分CAB,CD=BD在直角BDC中,BC=10,CD2+BD2=BC2,BD=CD=5,(2)如图,连接OB,OD,OC,AD平分CAB,且CAB=60,DAB=CAB=30,DOB=2DAB=60又OB=OD,OBD是等边三角形,BD=OB=ODO的直径为10,则OB=5,BD=5,AD平分CAB,ODBC,设垂足为E,BE=EC=OBsin60=,BC=
20、5【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型19、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得【详解】解:(I)本次随机抽样调查的学生人数为1812%=150人,m=100(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为
21、=4天,平均数为=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500(18%+10%)=700人【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键20、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值试题解析:(1)证明:,=(m3)141(m)=m11m+9=(m1)1+80,方程有两个不相等的实数根;(1),方程的两实根为,且, , ,(m3)13(m)=7,解得,m1=1,
22、m1=1,即m的值是1或121、 (1) =100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润A电脑数量+B型电脑每台利润B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100x),即y=(a100)x+50000,分三种情况讨论,当0a100时,y随x的增大而减小,a=100时,y=50000,当100m200
23、时,a1000,y随x的增大而增大,分别进行求解【详解】(1)根据题意,y=400x+500(100x)=100x+50000;(2)100x2x,x,y=100x+50000中k=1000,y随x的增大而减小,x为正数,x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100x),即y=(a100)x+50000,33x60,当0a100时,y随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大a=100时,a100=
24、0,y=50000,即商店购进A型电脑数量满足33x60的整数时,均获得最大利润;当100a200时,a1000,y随x的增大而增大,当x=60时,y取得最大值即商店购进60台A型电脑和40台B型电脑的销售利润最大【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.22、见解析【解析】先作出ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点【详解】以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;连接AF,则直线A
25、F即为ABC的角平分线;连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;连接FH交BF于点M,则M点即为所求【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键23、(1)-1;(2).【解析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案【详解】(1)原式=3+1(2)22=441=1;(2)原式=+=当a=2+时,原式=【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型24、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100m)6000,解得:m1,m是整数,m最大可取1答:这所中学最多可以购买篮球1个【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般
限制150内